Simplifying credit scoring rules using LVQ + PSO
<i>Purpose:</i> One of the key elements in the banking industry relies on the appropriate selection of customers. To manage credit risk, banks dedicate special efforts to classify customers according to their risk. The usual decision-making process consists of gathering personal and fina...
        Guardado en:
      
    
                  
      | Autores principales: | Lanzarini, Laura Cristina, Villa Monte, Augusto, Bariviera, Aurelio F., Jimbo Santana, Patricia Rosalía | 
|---|---|
| Formato: | Articulo | 
| Lenguaje: | Inglés | 
| Publicado: | 2017 | 
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/103270 https://www.emerald.com/insight/content/doi/10.1108/K-06-2016-0158/full/html | 
| Aporte de: | 
Ejemplares similares
- 
                
        
          An exploratory analysis of methods for extracting credit risk rules        
                  
 por: Jimbo Santana, Patricia, et al.
 Publicado: (2016)
- 
                
        
          Variations of Particle Swarm Optimization for Obtaining Classification Rules Applied to Credit Risk in Financial Institutions of Ecuador        
                  
 por: Jimbo Santana, Patricia, et al.
 Publicado: (2019)
- 
                
        
          Analysis of Methods for Generating Classification Rules Applicable to Credit Risk        
                  
 por: Jimbo Santana, Patricia, et al.
 Publicado: (2017)
- 
                
        
          Extraction of Knowledge with Population-Based Metaheuristics Fuzzy Rules Applied to Credit Risk        
                  
 por: Jimbo Santana, Patricia Rosalía, et al.
 Publicado: (2018)
- 
                
        
          User-Oriented Summaries Using a PSO Based Scoring Optimization Method        
                  
 por: Villa Monte, Augusto, et al.
 Publicado: (2019)