Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type I : Non-semisimple classes in PSLₙ(q)
We show that Nichols algebras of most simple Yetter–Drinfeld modules over the projective special linear group over a finite field, corresponding to non-semisimple orbits, have infinite dimension. We spell out a new criterium to show that a rack collapses.
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/102972 |
| Aporte de: |
| Sumario: | We show that Nichols algebras of most simple Yetter–Drinfeld modules over the projective special linear group over a finite field, corresponding to non-semisimple orbits, have infinite dimension. We spell out a new criterium to show that a rack collapses. |
|---|