Cosmological parameters and non-vacuum initial states
A class of spatially flat models with a cosmological constant and a primordial broken scale invariant (BSI) spectrum of adiabatic perturbations is confronted with the most up-to-date observational data of CMB and matter power spectrum. The theoretical model includes a parameter nb for the number of...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/102722 https://ri.conicet.gov.ar/11336/20839 |
| Aporte de: |
| Sumario: | A class of spatially flat models with a cosmological constant and a primordial broken scale invariant (BSI) spectrum of adiabatic perturbations is confronted with the most up-to-date observational data of CMB and matter power spectrum. The theoretical model includes a parameter nb for the number of quanta in the non–vacuum initial state, and a privileged scale leading to the existence of a feature in the primordial power spectrum. This feature is located at comoving wavenumber kb and its profile is characterized by a step in k with steepness α, the full set {nb, kb, α} being taken as free parameters in our numerical study. We present here preliminary results of a detailed Markov Chain Monte Carlo analysis with CAMB and CosmoMC of the latest CMB and P(k) measurements, including the 3-year WMAP and the final 2dFGRS catalogue, where we derive joint constraints on eight out of the many relevant primary parameters –both cosmological and feature– of our BSI adiabatic model. |
|---|