Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces
Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenva...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/102366 https://ri.conicet.gov.ar/11336/19011 |
| Aporte de: |
| Sumario: | Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems. |
|---|