Partial differential equations as three-dimensional inverse problem of moments

We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a<sub>1</sub>, b<sub>1</sub>)x(a<sub>2</sub>, b<sub>2</sub>)x(a<sub>3</sub>, b<sub>3</sub>...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pintarelli, María Beatriz, Vericat, Fernando
Formato: Articulo
Lenguaje:Inglés
Publicado: 2014
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/101921
https://ri.conicet.gov.ar/11336/33885
http://www.davidpublisher.org/index.php/Home/Article/index?id=484.html
Aporte de:
Descripción
Sumario:We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a<sub>1</sub>, b<sub>1</sub>)x(a<sub>2</sub>, b<sub>2</sub>)x(a<sub>3</sub>, b<sub>3</sub>). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.