Minimization of convex functionals over frame operators
We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation prob...
Guardado en:
| Autores principales: | Massey, Pedro Gustavo, Ruiz, Mariano Andrés |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/101182 https://ri.conicet.gov.ar/11336/19429 https://link.springer.com/article/10.1007/s10444-008-9092-5 https://arxiv.org/abs/0710.1258 |
| Aporte de: |
Ejemplares similares
-
The structure of minimizers of the frame potential on fusion frames
por: Massey, Pedro Gustavo, et al.
Publicado: (2010) -
Optimal frame designs for multitasking devices with weight restrictions
por: Benac, María José, et al.
Publicado: (2020) -
Frame completions with prescribed norms: local minimizers and applications
por: Massey, Pedro Gustavo, et al.
Publicado: (2017) -
Multiplicative Lidskii's inequalities and optimal perturbations of frames
por: Massey, Pedro Gustavo, et al.
Publicado: (2015) -
Optimal dual frames and frame completions for majorization
por: Massey, Pedro Gustavo, et al.
Publicado: (2013)