Convergence of the barycentre of measures from Fuchsian action groups
We prove the pointwise ergodic convergence of the sequence of barycentres of empirical measures which are defined from the action of Fuchsian groups and by maps valuated in CAT(0)−spaces. A result of this nature was established by Austin from actions of amenable groups and defining the empirical mea...
Guardado en:
| Autores principales: | Mesón, Alejandro Mario, Vericat, Fernando |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/101001 https://ri.conicet.gov.ar/11336/23511 http://www.mathem.pub.ro/proc/bsgp-20/K20-me.pdf |
| Aporte de: |
Ejemplares similares
-
Bounds for Estimators of Ergodic Averages
por: Mesón, Alejandro Mario, et al.
Publicado: (2013) - Convergence of the barycenter of measures from Fuchsian action groups.
-
Finite Cycle Gibbs Measures on Permutations of Zd
por: Armendáriz, I., et al. -
Finite Cycle Gibbs Measures on Permutations of Zd
Publicado: (2015) -
CP-chains and dimension preservation for projections of (×m,×n)-invariant Gibbs measures
por: Almarza, J.I.