Duality for frames in Krein spaces

A J-frame for a Krein space H is in particular a frame for H (in the Hilbert space sense). But it is also compatible with the indefinite inner-product of H, meaning that it determines a pair of maximal uniformly definite subspaces, an analogue to the maximal dual pair associated with an orthonormal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giribet, Juan Ignacio, Maestripieri, Alejandra Laura, Martínez Pería, Francisco Dardo
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/100541
https://ri.conicet.gov.ar/11336/88411
https://arxiv.org/pdf/1703.03660.pdf
Aporte de:
Descripción
Sumario:A J-frame for a Krein space H is in particular a frame for H (in the Hilbert space sense). But it is also compatible with the indefinite inner-product of H, meaning that it determines a pair of maximal uniformly definite subspaces, an analogue to the maximal dual pair associated with an orthonormal basis in a Krein space. This work is devoted to study duality for J-frames in Krein spaces. Also, tight and Parseval J-frames are defined and characterized.