Examples of homogeneous manifolds with uniformly bounded metric projection

Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chiumiento, Eduardo Hernán
Formato: Articulo
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/100354
https://ri.conicet.gov.ar/11336/18935
http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdf
Aporte de:
Descripción
Sumario:Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type.