Desempeño de un microsimulador de lluvia portátil para estudios hidrológicos

This work presents a portable rainfall micro-simulator entirely designed, constructed and calibrated in the Hydraulics Laboratory (UTN Facultad Regional Córdoba). This apparatus is completely disassembled and defines a test plot of 1 m². It aims at the in situ measurement of various hydrological par...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weber, Juan, Paoli, Héctor, Apestegui, Laureana
Formato: Artículo revista
Lenguaje:Español
Publicado: CURIHAM: Centro Universitario Rosario de Investigaciones Hidroambientales Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario Director: Dr. Ing. Hernán Stenta Riobamba 245 bis, 2000 Rosario (Santa Fe), Argentina. Telefa 2010
Materias:
Acceso en línea:https://cuadernosdelcuriham.unr.edu.ar/index.php/CURIHAM/article/view/64
Aporte de:
Descripción
Sumario:This work presents a portable rainfall micro-simulator entirely designed, constructed and calibrated in the Hydraulics Laboratory (UTN Facultad Regional Córdoba). This apparatus is completely disassembled and defines a test plot of 1 m². It aims at the in situ measurement of various hydrological parameters. All the drop-formers, built with 289 needles (diameter 0.8 mm), feeding on a tray with variable hydraulic head h (10 to 20 cm), which allows intensities i between 65 and 120 mm/h. Fall height of drops is 1.85 m, and its average diameter of 5.2 mm. Although there were initial estimates of the i-h relationship, a calibration was needed on the prototype to reflect actual operating conditions. Measurements were made using 5 raingauges distributed in the test plot, with 10 observations per hydraulic head, for a total of 7 heads, which amounted 350 experimental data. After careful statistical analysis it was possible to fit apotential curve between head and intensity, with an uncertainty of ±3 mm/hour, about 86% to the theoretical values expected. First in-situ experimental observations were successful, compared with double-ring infiltrometer technique widely used in this Laboratory.