Morphological and molecular variability in cotton (Gossypium hirsutum L.) genotypes from three geographical origins
Cotton (Gossypium hirsutum L.) has lost variability due to its domestication. For this reason, it is necessary to obtain the molecular and phenotypic characterization of new breeding materials for this species. The objective of this work was to characterize the genetic and phenotypic variability of...
Guardado en:
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Facultad de Ciencias Agronómicas - UNR
2022
|
| Materias: | |
| Acceso en línea: | https://cienciasagronomicas.unr.edu.ar/index.php/agro/article/view/43 |
| Aporte de: |
| Sumario: | Cotton (Gossypium hirsutum L.) has lost variability due to its domestication. For this reason, it is necessary to obtain the molecular and phenotypic characterization of new breeding materials for this species. The objective of this work was to characterize the genetic and phenotypic variability of 18 accessions from Argentina, the United States, and China. The materials belong to the INTA (Argentina’s Agricultural Technology Institute) genebank and are used for breeding programs. Sixteen pairs of microsatellite oligonucleotides were used for the study. For the phenotypic characterization, variables associated with mapping were used in two cropping seasons (2015-2016 and 2016-2017) in the INTA experimental field in Sáenz Peña, province of Chaco, Argentina. The genetic results showed medium/high values of polymorphism (62.22%), and the dendrogram showed two groups: one made up of Stoneville 474 (United States) and eight genotypes from China, and a second group made up of Deltapine 16 (United States), the genotypes from Argentina, and one genotype from China. The phenotypic results obtained through Principal Components Analysis showed significant differences between cropping seasons, while no significant differences were detected between geographical origins. The morphological characters of accessions from the three different geographical origins were similar. However, genetic differentiation was found between the microsatellites analyzed, with accessions BGSP 756, BGSP 767 and BGSP 783 from China exhibiting higher genetic distances than materials from both Argentina and the United States. Our results support the introduction of cotton germplasm from China for INTA's breeding program. |
|---|