Una revisión de los distintos estimadores robustos para muestreo en poblaciones finitas

Se presentaron estimadores clásicos y robustos para la estimación de parámetros de pobla-ciones finitas a partir de muestras seleccionadas en forma probabilística. Los primeros po-seen el inconveniente de ser sensibles ante la aparición de valores atípicos. Una solución surge a partir del empleo de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bortolotto, Eugenia, Marí, Gonzalo Pablo Domingo
Otros Autores: Secretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario
Formato: conferenceObject documento de conferencia acceptedVersion
Lenguaje:Español
Publicado: 2017
Materias:
Acceso en línea:http://hdl.handle.net/2133/7613
http://hdl.handle.net/2133/7613
Aporte de:
Descripción
Sumario:Se presentaron estimadores clásicos y robustos para la estimación de parámetros de pobla-ciones finitas a partir de muestras seleccionadas en forma probabilística. Los primeros po-seen el inconveniente de ser sensibles ante la aparición de valores atípicos. Una solución surge a partir del empleo de estimadores denominados robustos, los cuales son menos sen-sibles ante la existencia de outliers. Se presenta un conjunto de funciones existentes en el programa R que permite el cálculo de los estimadores y de sus correspondientes estimacio-nes de variancia. En estudios futuros se planea la evaluación de los estimadores clásicos y robustos a partir de simulaciones considerando diversos diseños muestrales y datos contaminados con distin-tos números de observaciones atípicas.