Formalization of the Domination Chain with Weighted Parameters

The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generaliz...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Severín, Daniel Esteban
Otros Autores: LIPIcs – Leibniz International Proceedings in Informatics
Formato: conferenceObject documento de conferencia publishedVersion
Lenguaje:Inglés
Publicado: 2020
Materias:
Coq
Acceso en línea:http://hdl.handle.net/2133/18978
http://hdl.handle.net/2133/18978
Aporte de:
Descripción
Sumario:The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) ≤ γ(G) ≤ ι(G) ≤ α(G) ≤ Γ(G) ≤ IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.