Deep Learning-Based Instance Segmentation of Neural Progenitor Cell Nuclei in Fluorescence Microscopy Images
In this work, a Deep Learning-based machine vision model was devel- oped for the detection, segmentation and counting of Neural Progenitor Cell nuclei from fluorescence microscopy images. The cells were obtained from adult mice and cultivated in vitro, with cellular nuclei labeled using DAPI...
Guardado en:
| Autores principales: | Pérez, Gabriel, Russo, Claudia, Palumbo, María Laura, Moroni, Alejandro David |
|---|---|
| Formato: | Documento de conferencia publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Springer Nature Switzerland AG
2025
|
| Materias: | |
| Acceso en línea: | http://repositorio.unnoba.edu.ar/xmlui/handle/23601/905 |
| Aporte de: |
Ejemplares similares
-
Nuclear acridine orange fluorescence in Rhizoctonia isolates from rice
por: Barrera, Viviana A., et al.
Publicado: (2021) -
Comparing marker definition algorithms for watershed segmentation in microscopy images
por: González, Mariela A., et al.
Publicado: (2008) -
The Antepredicative Instance in the nouvelle phénoménologie
por: Roggero, Jorge Luis
Publicado: (2021) -
Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal
por: García, Mario Alejandro, et al.
Publicado: (2017) -
Classification of melanoma images with fisher vectors and deep learning
por: Liberman, G., et al.