Classification of summer crops using Active Learning techniques on Landsat images in the Northwest of the Province of Buenos Aires
The present work aims to obtain a classifier for summer crops in the northwest of Buenos Aires province from Landsat satellite images. Active Learning (AL) was used as the classification technique since it obtains satisfactory results using a small set of labeled samples to train the algorithm. The...
Guardado en:
| Autores principales: | Cicerchia, Lucas Benjamín, Russo, Claudia, Abasolo, María José |
|---|---|
| Otros Autores: | 0000-0003-0316-7896 |
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Springer, Cham.
2021
|
| Materias: | |
| Acceso en línea: | https://repositorio.unnoba.edu.ar/xmlui/handle/23601/151 |
| Aporte de: |
Ejemplares similares
-
Classification and prediction of wavelet coefficients for lossless compression of landsat images
por: Acevedo, D., et al. -
Classification and prediction of wavelet coefficients for lossless compression of landsat images
por: Acevedo, Daniel G., et al.
Publicado: (2006) - National scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey
- National scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey
-
Gypsum classification based on ASTER images in the Principal Cordillera of Mendoza
por: Mescua, J.F.
Publicado: (2010)