On uncertain functions

In this paper, we analize some basic properties of the real functions f : R → R that satisfy the polynomial equation X 2 + 1 = 0 (that is, such that f2 + idR = 0, where f2 = f ◦ f). We prove their existence, give a characterization of such functions and show a concrete example from which infinite ot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Freyre, Sebastián, Sabia, Juan
Formato: Artículo revista
Lenguaje:Español
Publicado: Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2023
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/REM/article/view/41052
Aporte de:
id I10-R366-article-41052
record_format ojs
spelling I10-R366-article-410522023-08-08T16:31:14Z On uncertain functions Sobre funciones inciertas Freyre, Sebastián Sabia, Juan Funciones reales de una variable Continuidad Polinomios Espacios vectoriales Real univariate functions Continuity Polynomials Vector spaces In this paper, we analize some basic properties of the real functions f : R → R that satisfy the polynomial equation X 2 + 1 = 0 (that is, such that f2 + idR = 0, where f2 = f ◦ f). We prove their existence, give a characterization of such functions and show a concrete example from which infinite other examples can be derived. Next, we discuss some issues about their continuity. Finally, a classic linear algebra mechanism allows us to prove that, for every polynomial P ∈ Q[X], there exist functions f : R → R that satisfy the polynomial equation P = 0. En este trabajo, analizamos algunas propiedades básicas de las funciones reales f : R → R que satisfacen la ecuación polinomial X 2+1 = 0 (es decir, tales que f2+idR = 0, donde f2 = f ◦ f). Probamos su existencia, damos una caracterización de tales funciones y mostramos un ejemplo concreto del cual pueden derivarse infinitos ejemplos más. A continuación discutimos algunos aspectos sobre su continuidad. Finalmente, un mecanismo clásico del álgebra lineal nos permite probar que, para cualquier polinomio P ∈ Q[X], existen funciones f : R → R que satisfacen la ecuación polinomial P = 0. Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2023-04-27 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares application/pdf https://revistas.unc.edu.ar/index.php/REM/article/view/41052 10.33044/revem.41052 Revista de Educación Matemática; Vol. 38 Núm. 1 (2023); 10-21 1852-2890 0326-8780 spa https://revistas.unc.edu.ar/index.php/REM/article/view/41052/41145 https://creativecommons.org/licenses/by-sa/4.0/
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-366
container_title_str Revista de Educación Matemática
language Español
format Artículo revista
topic Funciones reales de una variable
Continuidad
Polinomios
Espacios vectoriales
Real univariate functions
Continuity
Polynomials
Vector spaces
spellingShingle Funciones reales de una variable
Continuidad
Polinomios
Espacios vectoriales
Real univariate functions
Continuity
Polynomials
Vector spaces
Freyre, Sebastián
Sabia, Juan
On uncertain functions
topic_facet Funciones reales de una variable
Continuidad
Polinomios
Espacios vectoriales
Real univariate functions
Continuity
Polynomials
Vector spaces
author Freyre, Sebastián
Sabia, Juan
author_facet Freyre, Sebastián
Sabia, Juan
author_sort Freyre, Sebastián
title On uncertain functions
title_short On uncertain functions
title_full On uncertain functions
title_fullStr On uncertain functions
title_full_unstemmed On uncertain functions
title_sort on uncertain functions
description In this paper, we analize some basic properties of the real functions f : R → R that satisfy the polynomial equation X 2 + 1 = 0 (that is, such that f2 + idR = 0, where f2 = f ◦ f). We prove their existence, give a characterization of such functions and show a concrete example from which infinite other examples can be derived. Next, we discuss some issues about their continuity. Finally, a classic linear algebra mechanism allows us to prove that, for every polynomial P ∈ Q[X], there exist functions f : R → R that satisfy the polynomial equation P = 0.
publisher Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación
publishDate 2023
url https://revistas.unc.edu.ar/index.php/REM/article/view/41052
work_keys_str_mv AT freyresebastian onuncertainfunctions
AT sabiajuan onuncertainfunctions
AT freyresebastian sobrefuncionesinciertas
AT sabiajuan sobrefuncionesinciertas
first_indexed 2024-09-03T22:36:58Z
last_indexed 2024-09-03T22:36:58Z
_version_ 1809216195834937344