On uncertain functions

In this paper, we analize some basic properties of the real functions f : R → R that satisfy the polynomial equation X 2 + 1 = 0 (that is, such that f2 + idR = 0, where f2 = f ◦ f). We prove their existence, give a characterization of such functions and show a concrete example from which infinite ot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Freyre, Sebastián, Sabia, Juan
Formato: Artículo revista
Lenguaje:Español
Publicado: Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2023
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/REM/article/view/41052
Aporte de:
Descripción
Sumario:In this paper, we analize some basic properties of the real functions f : R → R that satisfy the polynomial equation X 2 + 1 = 0 (that is, such that f2 + idR = 0, where f2 = f ◦ f). We prove their existence, give a characterization of such functions and show a concrete example from which infinite other examples can be derived. Next, we discuss some issues about their continuity. Finally, a classic linear algebra mechanism allows us to prove that, for every polynomial P ∈ Q[X], there exist functions f : R → R that satisfy the polynomial equation P = 0.