Partitioning polygons, from scissors to generalizations
This article illustrates how a problem posed in the contest “El Número de Oro” might impulse mathematical enthusiasm and induce addressing a more general question in a natural way. Studying the problem culminates on the rediscover of a general theorem with an aesthetically appealing, always...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación
2020
|
| Materias: | |
| Acceso en línea: | https://revistas.unc.edu.ar/index.php/REM/article/view/29729 |
| Aporte de: |
| Sumario: | This article illustrates how a problem posed in the contest “El Número de Oro” might impulse mathematical enthusiasm and induce addressing a more general question in a natural way. Studying the problem culminates on the rediscover of a general theorem with an aesthetically appealing, always keeping the geometric treatment elementary. |
|---|