Fluvial restoration by applying multi-target genetic algorithms

Analyzing the processes of environmental resource management, it is clear the increased concern of the environment, configured as a factor (in conjunction with economic and technological criteria, etc.) to take into account in decision-making processes. This combination of factors of different natur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Údias, Ángel, Redchuk, Andrés, Cano, Javier, Galbiati, Lorenzo
Formato: Artículo revista
Lenguaje:Español
Publicado: Escuela de Perfeccionamiento en Investigación Operativa 2018
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/epio/article/view/20306
Aporte de:
id I10-R359-article-20306
record_format ojs
spelling I10-R359-article-203062018-06-14T15:43:22Z Fluvial restoration by applying multi-target genetic algorithms Restauración fluvial aplicando algoritmos genéticos multiobjetivo Údias, Ángel Redchuk, Andrés Cano, Javier Galbiati, Lorenzo algoritmo genético multicriterio coste-eficacia directiva marco del agua métricas genetic algorithm multicriteria cost-efficacy water framework directive metrics Analyzing the processes of environmental resource management, it is clear the increased concern of the environment, configured as a factor (in conjunction with economic and technological criteria, etc.) to take into account in decision-making processes. This combination of factors of different nature complicates the quantitative analysis of the alternatives to which the decision maker has to face, especially if one takes into account environmental factors that typically, by their very nature, are often difficult to compare and quantify.The use of a system of multicriteria decision support that integrate engine optimization as a multiobjective genetic algorithm is suitable to apply to the environmental issues presented in this article. Analizando los procesos de gestión de los recursos ambientales, es evidente el aumento de la preocupación por el medio ambiente, configurándolo como un factor más (conjuntamente con criterios económicos, tecnológicos, etc.) a tener en cuenta en los procesos de toma de decisiones. Esta combinación de factores de diversa naturaleza complica el análisis cuantitativo de las alternativas a las que se ha de enfrentar el decisor, más aún si se tiene en cuenta que típicamente los factores ambientales, por su propia naturaleza, suelen ser de difícil comparación y cuantificación.La utilización de un sistema de ayuda a la decisión multicriterio que integran como motor de optimización un algoritmo genético multiobjetivo resulta idónea para la aplicación a la problemática medio ambiental que se presenta en este artículo. Escuela de Perfeccionamiento en Investigación Operativa 2018-06-14 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unc.edu.ar/index.php/epio/article/view/20306 Revista de la Escuela de Perfeccionamiento en Investigación Operativa; Vol. 21 Núm. 34 (2013): Noviembre; 62-80 1853-9777 0329-7322 spa https://revistas.unc.edu.ar/index.php/epio/article/view/20306/19950
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-359
container_title_str Revista de la Escuela de Perfeccionamiento en Investigación Operativa
language Español
format Artículo revista
topic algoritmo genético
multicriterio
coste-eficacia
directiva marco del agua
métricas
genetic algorithm
multicriteria
cost-efficacy
water framework directive
metrics
spellingShingle algoritmo genético
multicriterio
coste-eficacia
directiva marco del agua
métricas
genetic algorithm
multicriteria
cost-efficacy
water framework directive
metrics
Údias, Ángel
Redchuk, Andrés
Cano, Javier
Galbiati, Lorenzo
Fluvial restoration by applying multi-target genetic algorithms
topic_facet algoritmo genético
multicriterio
coste-eficacia
directiva marco del agua
métricas
genetic algorithm
multicriteria
cost-efficacy
water framework directive
metrics
author Údias, Ángel
Redchuk, Andrés
Cano, Javier
Galbiati, Lorenzo
author_facet Údias, Ángel
Redchuk, Andrés
Cano, Javier
Galbiati, Lorenzo
author_sort Údias, Ángel
title Fluvial restoration by applying multi-target genetic algorithms
title_short Fluvial restoration by applying multi-target genetic algorithms
title_full Fluvial restoration by applying multi-target genetic algorithms
title_fullStr Fluvial restoration by applying multi-target genetic algorithms
title_full_unstemmed Fluvial restoration by applying multi-target genetic algorithms
title_sort fluvial restoration by applying multi-target genetic algorithms
description Analyzing the processes of environmental resource management, it is clear the increased concern of the environment, configured as a factor (in conjunction with economic and technological criteria, etc.) to take into account in decision-making processes. This combination of factors of different nature complicates the quantitative analysis of the alternatives to which the decision maker has to face, especially if one takes into account environmental factors that typically, by their very nature, are often difficult to compare and quantify.The use of a system of multicriteria decision support that integrate engine optimization as a multiobjective genetic algorithm is suitable to apply to the environmental issues presented in this article.
publisher Escuela de Perfeccionamiento en Investigación Operativa
publishDate 2018
url https://revistas.unc.edu.ar/index.php/epio/article/view/20306
work_keys_str_mv AT udiasangel fluvialrestorationbyapplyingmultitargetgeneticalgorithms
AT redchukandres fluvialrestorationbyapplyingmultitargetgeneticalgorithms
AT canojavier fluvialrestorationbyapplyingmultitargetgeneticalgorithms
AT galbiatilorenzo fluvialrestorationbyapplyingmultitargetgeneticalgorithms
AT udiasangel restauracionfluvialaplicandoalgoritmosgeneticosmultiobjetivo
AT redchukandres restauracionfluvialaplicandoalgoritmosgeneticosmultiobjetivo
AT canojavier restauracionfluvialaplicandoalgoritmosgeneticosmultiobjetivo
AT galbiatilorenzo restauracionfluvialaplicandoalgoritmosgeneticosmultiobjetivo
first_indexed 2024-09-03T22:23:14Z
last_indexed 2024-09-03T22:23:14Z
_version_ 1809215331616423936