Sistemas de colas con intermision de servicios y clientes sin tolerancia
This paper provides mathematical models for quantitatively determining the typical variables of efficiency and the distribution of the steady-state probabilities for queueing systems with random breakdowns, wherein the customers present characteristics of intolerance. In particular, MM1 single serve...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Escuela de Perfeccionamiento en Investigación Operativa
2018
|
| Materias: | |
| Acceso en línea: | https://revistas.unc.edu.ar/index.php/epio/article/view/20252 |
| Aporte de: |
| Sumario: | This paper provides mathematical models for quantitatively determining the typical variables of efficiency and the distribution of the steady-state probabilities for queueing systems with random breakdowns, wherein the customers present characteristics of intolerance. In particular, MM1 single server systems with infinite population and Markovian processes for both, clients and interruptions, are herein described through an analytical approach. These models further allow solving multiclass systems with preemptive priority operating under the same hypothesis of intolerance. |
|---|