Topics and trends in physics teaching using artificial intelligence

This study investigates the application of machine learning, specifically using the Latent Dirichlet Allocation algorithm, to identify topics and trends in academic journals on Physics education in the Latin America context. The journals analyzed were the Revista Brasileira de Ensino de Física (RBEF...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ghuron, Erick, Trugillo Martins Fontes, Daniel, Machado Rodrigues, André
Formato: Artículo revista
Lenguaje:Español
Publicado: Asociación de Profesores de Física de la Argentina 2023
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/revistaEF/article/view/43304
Aporte de:
id I10-R316-article-43304
record_format ojs
spelling I10-R316-article-433042023-12-01T15:10:35Z Topics and trends in physics teaching using artificial intelligence Tópicos e tendências no ensino de física utilizando inteligência artificial Ghuron, Erick Trugillo Martins Fontes, Daniel Machado Rodrigues, André Machine learning Information and communication technology Quantitative analysis Literature review Aprendizado de máquina Tecnologia da informação e comunicação Análise quantitativa Revisão bibliográfica This study investigates the application of machine learning, specifically using the Latent Dirichlet Allocation algorithm, to identify topics and trends in academic journals on Physics education in the Latin America context. The journals analyzed were the Revista Brasileira de Ensino de Física (RBEF) and the Revista de Enseñanza de la Física (REF), covering the period from 2001 to 2022. A total of 1664 articles from RBEF and 885 from REF were collected, representing 79% and 85% of the articles published in these periods, respectively. The results indicated dominant topics in each journal and their respective trends over time. For instance, RBEF showed a decline in topics related to Physics Education and an increase in publications on General Physics. In contrast, REF displayed a predominance of topics related to Teaching, with a significant rise in publications about Virtual Laboratory and Teaching. These findings provide valuable insights into the evolution of research themes in Physics education in the Brazilian and Argentine contexts and the potential of using machine learning in Physics education research. Este trabalho investiga a aplicação do aprendizado de máquina, particularmente utilizando o algoritmo Latent Dirichlet Allocation, para identificar tópicos e tendências em revistas acadêmicas de ensino de Física no contexto latino-americano. As revistas analisadas foram a Revista Brasileira de Ensino de Física (RBEF) e a Revista de Enseñanza de la Física (REF), abrangendo o período de 2001 a 2022. Foram coletados 1664 artigos da RBEF e 885 da REF, representando 79% e 85% dos artigos publicados nesses períodos, respectivamente. Os resultados indicaram tópicos dominantes em cada revista e suas respectivas tendências ao longo do tempo. Enquanto a RBEF mostrou um declínio em tópicos relacionados à Educação e um aumento nas publicações sobre Física Geral, a REF apresentou uma predominância de tópicos relacionados à Educação, com um aumento significativo em publicações sobre Laboratório Virtual e Ensino. Estas descobertas proporcionam informações valiosas sobre a evolução dos temas de pesquisa em ensino de Física nos contextos brasileiro e argentino e quais são as potencialidades de se utilizar o aprendizado de máquina em pesquisas de ensino de Física. Asociación de Profesores de Física de la Argentina 2023-12-01 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unc.edu.ar/index.php/revistaEF/article/view/43304 Journal of Physics Teaching; Vol. 35: Número Extra: Selección de Trabajos presentados a REF; 167-173 Revista de Enseñanza de la Física; Vol. 35: Número Extra: Selección de Trabajos presentados a REF; 167-173 Revista de Enseñanza de la Física; v. 35: Número Extra: Selección de Trabajos presentados a REF; 167-173 2250-6101 0326-7091 spa https://revistas.unc.edu.ar/index.php/revistaEF/article/view/43304/43247 http://creativecommons.org/licenses/by-nc-nd/4.0
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-316
container_title_str Revista de Enseñanza de la Física
language Español
format Artículo revista
topic Machine learning
Information and communication technology
Quantitative analysis
Literature review
Aprendizado de máquina
Tecnologia da informação e comunicação
Análise quantitativa
Revisão bibliográfica
spellingShingle Machine learning
Information and communication technology
Quantitative analysis
Literature review
Aprendizado de máquina
Tecnologia da informação e comunicação
Análise quantitativa
Revisão bibliográfica
Ghuron, Erick
Trugillo Martins Fontes, Daniel
Machado Rodrigues, André
Topics and trends in physics teaching using artificial intelligence
topic_facet Machine learning
Information and communication technology
Quantitative analysis
Literature review
Aprendizado de máquina
Tecnologia da informação e comunicação
Análise quantitativa
Revisão bibliográfica
author Ghuron, Erick
Trugillo Martins Fontes, Daniel
Machado Rodrigues, André
author_facet Ghuron, Erick
Trugillo Martins Fontes, Daniel
Machado Rodrigues, André
author_sort Ghuron, Erick
title Topics and trends in physics teaching using artificial intelligence
title_short Topics and trends in physics teaching using artificial intelligence
title_full Topics and trends in physics teaching using artificial intelligence
title_fullStr Topics and trends in physics teaching using artificial intelligence
title_full_unstemmed Topics and trends in physics teaching using artificial intelligence
title_sort topics and trends in physics teaching using artificial intelligence
description This study investigates the application of machine learning, specifically using the Latent Dirichlet Allocation algorithm, to identify topics and trends in academic journals on Physics education in the Latin America context. The journals analyzed were the Revista Brasileira de Ensino de Física (RBEF) and the Revista de Enseñanza de la Física (REF), covering the period from 2001 to 2022. A total of 1664 articles from RBEF and 885 from REF were collected, representing 79% and 85% of the articles published in these periods, respectively. The results indicated dominant topics in each journal and their respective trends over time. For instance, RBEF showed a decline in topics related to Physics Education and an increase in publications on General Physics. In contrast, REF displayed a predominance of topics related to Teaching, with a significant rise in publications about Virtual Laboratory and Teaching. These findings provide valuable insights into the evolution of research themes in Physics education in the Brazilian and Argentine contexts and the potential of using machine learning in Physics education research.
publisher Asociación de Profesores de Física de la Argentina
publishDate 2023
url https://revistas.unc.edu.ar/index.php/revistaEF/article/view/43304
work_keys_str_mv AT ghuronerick topicsandtrendsinphysicsteachingusingartificialintelligence
AT trugillomartinsfontesdaniel topicsandtrendsinphysicsteachingusingartificialintelligence
AT machadorodriguesandre topicsandtrendsinphysicsteachingusingartificialintelligence
AT ghuronerick topicosetendenciasnoensinodefisicautilizandointeligenciaartificial
AT trugillomartinsfontesdaniel topicosetendenciasnoensinodefisicautilizandointeligenciaartificial
AT machadorodriguesandre topicosetendenciasnoensinodefisicautilizandointeligenciaartificial
first_indexed 2024-09-03T20:41:07Z
last_indexed 2024-09-03T20:41:07Z
_version_ 1809208906567647232