Métricas sobre grupos y anillos con aplicaciones a la teoría de códigos

Tradicionalmente la Teoría de Códigos se ocupó de construir y analizar códigos sobre cuerpos finitos. Con el tiempo, también comenzaron a considerarse códigos sobre estructuras algebraicas más generales, como anillos, módulos y grupos. Esto llevó a la necesidad de considerar nuevas métricas, además...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vides, Maximiliano Guillermo
Otros Autores: Podestá, Ricardo Alberto
Formato: doctoralThesis
Lenguaje:Español
Publicado: 2018
Materias:
Acceso en línea:http://hdl.handle.net/11086/6573
Aporte de:
Descripción
Sumario:Tradicionalmente la Teoría de Códigos se ocupó de construir y analizar códigos sobre cuerpos finitos. Con el tiempo, también comenzaron a considerarse códigos sobre estructuras algebraicas más generales, como anillos, módulos y grupos. Esto llevó a la necesidad de considerar nuevas métricas, además de la clásica métrica de Hamming, más adecuadas para cada una de esas estructuras. En este trabajo, estudiaremos el espacio de métricas sobre grupos y anillos, en base a equivalencias, de las cuales podremos obtener propiedades generales de métricas especificas de interés para la Teoría de Códigos. Además estudiaremos los grupos de simetrías de métricas, los cuales nos permitirán decidir la existencia o no de isometrías entre espacios con estructuras distintas, obteniendo generalizaciones del conocido mapa de Gray. En particular, estudiaremos las métricas poset; y en el caso de posets jerárquicos, daremos una descripción de su grupo de simetrías, sus identidades de MacWilliams respectivas y describiremos algunas nuevas isometrías obtenidas.