A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive)...
Guardado en:
| Autores principales: | Agnelli, Juan Pablo, Garau, Eduardo Mario, Morin, Pedro |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/20821 https://doi.org/10.1051/m2an/2014010 |
| Aporte de: |
Ejemplares similares
-
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
por: Agnelli, Juan Pablo, et al.
Publicado: (2021) -
Interpolation in Jacobi-weighted spaces and its application to a posteriori error estimations of the p-version of the finite element method
por: Armentano, M.G., et al. -
Interpolation in Jacobi-weighted spaces and its application to a posteriori error estimations of the p-version of the finite element method
Publicado: (2016) -
A posteriori error estimates for the Steklov eigenvalue problem
por: Armentano, M.G., et al. -
A posteriori error estimates for the Steklov eigenvalue problem
por: Armentano, Maria Gabriela, et al.
Publicado: (2008)