Completeness in hybrid type theory
We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the w...
Guardado en:
| Autores principales: | Areces, Carlos Eduardo, Blackburn, Patrick, Huertas, Antonia, Manzano, María |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/20021 https://doi.org/10.1007/s10992-012-9260-4 |
| Aporte de: |
Ejemplares similares
-
Completeness in hybrid type theory
por: Areces, Carlos Eduardo, et al.
Publicado: (2021) -
Completeness results for memory logics
por: Areces, C., et al. -
Completeness results for memory logics
por: Areces, Carlos Eduardo, et al.
Publicado: (2012) -
Resolution with order and selection for hybrid logics
por: Areces, Carlos Eduardo, et al.
Publicado: (2011) -
Resolution with order and selection for hybrid logics
por: Areces, C., et al.