Estudio de métodos semisupervisados para la desambiguación de sentidos verbales del español

Esta tesis explora el uso de técnicas semisupervisadas para la desambigación de sentidos verbales del español. El objetivo es el estudio de como la información de datos no etiquetados, que son mayores en tamaño, puede ayudar a un clasificador entrenado desde un conjunto de datos etiquetados pequeño....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cardellino, Cristian Adrián
Otros Autores: Alonso i Alemany, Laura
Formato: doctoralThesis
Lenguaje:Español
Publicado: 2018
Materias:
Acceso en línea:http://hdl.handle.net/11086/6601
Aporte de:
Descripción
Sumario:Esta tesis explora el uso de técnicas semisupervisadas para la desambigación de sentidos verbales del español. El objetivo es el estudio de como la información de datos no etiquetados, que son mayores en tamaño, puede ayudar a un clasificador entrenado desde un conjunto de datos etiquetados pequeño. La tesis comienza desde la tarea completamente supervisada de desambiguación de sentidos verbales y estudia las siguientes técnicas semisupervisadas comparando su impacto en la tarea original: uso de vectores de palabras (o word embeddings), autoaprendizaje, aprendizaje activo y redes neuronales en escalera.