Subálgebras de álgebra de Lie de operadores pseudo-diferenciales matriciales cuánticos y representaciones de módulos de peso máximo cuasifinitos de subálgebras de tipo ortogonal y simpléticos
En esta tesis caracterizamos los módulos irreducibles de peso máximo cuasifinitos de las sub\'algebras del álgebra de Lie de operadores pseudo-diferenciales matriciales cuánticos N x N. En la primer parte, se presentan los resultados que obtenidos, dando una descripción completa de las anti-in...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | doctoralThesis |
| Lenguaje: | Español |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/5845 |
| Aporte de: |
| Sumario: | En esta tesis caracterizamos los módulos irreducibles de peso máximo cuasifinitos de las sub\'algebras del álgebra de Lie de operadores pseudo-diferenciales matriciales cuánticos N x N.
En la primer parte, se presentan los resultados que obtenidos, dando una descripción completa de las anti-involuciones que preservan la graduación principal. Obtenemos, salvo conjugación, dos familias de anti-involuciones para un cierto parámetro n con resultados diferentes cuando n=N y n En la segunda parte, nos focalizamos en el estudio de las subálgebras de tipo "ortogonal" y "simpléctico" halladas para el caso n=N, puntualmente la clasificación y realización de los módulos irreducibles de peso máximo cuasifinitos. |
|---|