Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Guardado en:
| Autores principales: | López Steinmetz, Lorena Cecilia, Sison, Margarita, Zhumagambetov, Rustam, Godoy, Juan Carlos, Haufe, Stefan |
|---|---|
| Otros Autores: | https://orcid.org/0000-0001-6255-4031 |
| Formato: | publishedVersion article |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/553286 https://www.frontiersin.org/journals/psychiatry https://doi.org/10.3389/fpsyt.2024.1376784 |
| Aporte de: |
Ejemplares similares
-
Frost prediction with machine learning techniques
por: Verdes, Pablo Fabián, et al.
Publicado: (2000) -
Are statistics and machine learning enough to make predictions and forecasts?
por: Lorenzo, Antonio, et al.
Publicado: (2020) -
Strategies to Predict Students’ Exam Attendance
por: Villarreal, Gonzalo Luján, et al.
Publicado: (2024) -
Dataset and R Code for: A longitudinal study on depression and anxiety in college students during the first 106-days of the lengthy Argentinean quarantine for the COVID-19 pandemic
por: López Steinmetz, Lorena Cecilia
Publicado: (2021) -
Mental Health Impacts in Argentinean College Students During COVID-19 Quarantine
por: López Steinmetz, Lorena Cecilia, et al.
Publicado: (2021)