On Dirichlet problems with singular nonlinearity of indefinite sign
Let Ω be a smooth bounded domain in RN , N ≥ 1, let K, M be two nonnegative functions and let α, γ > 0. We study existence and nonexistence of positive solutions for singular problems of the form −Δu = K(x)u−α − λM (x)u−γ in Ω, u = 0 on ∂Ω, where λ > 0 is a real parameter. We mention that as a...
Guardado en:
| Autores principales: | Godoy, Tomás Fernando, Kaufmann, Uriel |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/28228 https://doi.org/10.48550/arXiv.1411.5875 |
| Aporte de: |
Ejemplares similares
-
Positivity results for indefinite sublinear elliptic problems via a continuity argument
por: Kaufmann, Uriel, et al.
Publicado: (2024) -
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains
por: Godoy, Tomás Fernando, et al.
Publicado: (2021) -
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains
por: Godoy, Tomás Fernando, et al.
Publicado: (2021) -
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
por: Kaufmann, Uriel, et al.
Publicado: (2023) -
Existence of nonnegative solutions for singular elliptic problems
por: Godoy, Tomás Fernando, et al.
Publicado: (2023)