On Dirichlet problems with singular nonlinearity of indefinite sign
Let Ω be a smooth bounded domain in RN , N ≥ 1, let K, M be two nonnegative functions and let α, γ > 0. We study existence and nonexistence of positive solutions for singular problems of the form −Δu = K(x)u−α − λM (x)u−γ in Ω, u = 0 on ∂Ω, where λ > 0 is a real parameter. We mention that as a...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/28228 https://doi.org/10.48550/arXiv.1411.5875 |
| Aporte de: |
| Sumario: | Let Ω be a smooth bounded domain in RN , N ≥ 1, let K, M be two nonnegative functions and let α, γ > 0. We study existence and nonexistence of positive solutions for singular problems of the form −Δu = K(x)u−α − λM (x)u−γ in Ω, u = 0 on ∂Ω, where λ > 0 is a real parameter. We mention that as a particular case our results apply to problems of the form −Δu = m(x)u−γ in Ω, u = 0 on ∂Ω, where m is allowed to change sign in Ω. |
|---|