The Brauer-Picard group of the representation category of finite supergroup algebras
We develop further the techniques presented in a previous article (M. Mombelli. Abh. Math. Semin. Univ. Hamb. 82 (2012), 173–192), to study bimodule categories over the representation categories of arbitrary finite-dimensional Hopf algebras. We compute the Brauer-Picard group of equivalence classes...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/19337 |
| Aporte de: |
| Sumario: | We develop further the techniques presented in a previous article (M. Mombelli. Abh. Math. Semin. Univ. Hamb. 82 (2012), 173–192), to study bimodule categories over the representation categories of arbitrary finite-dimensional Hopf algebras. We compute the Brauer-Picard group of equivalence classes of exact invertible bimodule categories over the representation categories of a certain large family of pointed non-semisimple Hopf algebras, the so called supergroup algebras (N. Andruskiewitsch, P. Etingof and S. Gelaki. Michigan Math. J. 49 (2001), 277–298). To obtain this result we first give a classification of equivalence classes of exact indecomposable bimodule categories over such Hopf algebras. |
|---|