Involvement of membrane tubulin in erythrocyte deformability and blood pressure

Objective: To test the hypothesis that erythrocyte deformability is influenced by changes in the content of membrane tubulin (Mem-tub). Methods and Results: Human erythrocytes contain tubulin distributed in three pools (membrane, sedimentable, soluble). Erythrocytes from hypertensive humans have a h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Amaiden, M.R
Otros Autores: Monesterolo, N.E, Santander, V.S, Campetelli, A.N, Arce, C.A, Pie, J., Hope, S.I, Vatta, M.S, Casale, C.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Objective: To test the hypothesis that erythrocyte deformability is influenced by changes in the content of membrane tubulin (Mem-tub). Methods and Results: Human erythrocytes contain tubulin distributed in three pools (membrane, sedimentable, soluble). Erythrocytes from hypertensive humans have a higher proportion of Mem-tub. Increased Mem-tub content in hypertensive patients was correlated with decreased erythrocyte deformability. Treatment of erythrocytes from normotensive individuals with taxol increased Mem-tub content and reduced deformability, whereas treatment of hypertensive patients erythrocytes with nocodazole had the opposite effect. In-vivo experiments with rats were performed to examine the possible relationship between Mem-tub content, erythrocyte deformability, and blood pressure. Spontaneously hypertensive rats (SHRs) showed lower erythrocyte deformability than normotensive Wistar rats. During the development of hypertension in SHR, tubulin in erythrocytes is translocated to the membrane, and this process is correlated with decreased deformability. In-vivo treatment (intraperitoneal injection) of SHR with nocodazole decreased Mem-tub content, increased erythrocyte deformability, and decreased blood pressure, whereas treatment of Wistar rats with taxol had the opposite effects. Conclusion: These findings indicate that increased Mem-tub content contributes to reduced erythrocyte deformability in hypertensive animals. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Bibliografía:Mohandas, N., Gallagher, P.G., Red cell membrane: Past, present and future (2008) Blood, 112, pp. 3939-3948
Chabanel, A., Schachter, D., Chien, S., Increased rigidity of red blood cell membrane in young spontaneously hypertensive rats (1987) Hypertension, 10, pp. 603-610
Chien, S., Blood rheology in hypertension and cardiovascular diseases (1977) Cardiovasc Med, 2, pp. 356-360
Ernst, E., Influence of regular physical activity on blood rheology (1987) European Heart Journal, 8 (SUPPL. G), pp. 59-62
Cabrales, P., Effects of erythrocyte flexibility on microvascular perfusion and oxygenation Turing acute anemia (2007) Am J Physiol Heart Circ Physiol, 293, pp. 1206-1215
Diez-Silva, M., Dao, M., Han, J., Lim, C.T., Suresh, S., Shape and biomechanical characteristics of human red blood cells in health and disease (2010) MRS Bull, 35, pp. 382-388
Gobel, B., Schulte, A., Weisser, B., Glanzer, K., Vetter, H., Dusing, R., Arterial blood pressure. Correlation whit erythrocyte count, hematocrit and hemoglobin concentration (1991) Am J Hypertens, 4, pp. 14-19
Alet, A., Chiesa, M., D'Arrigo, M., Foresto, P., Valverde, J., Rasia, R., Hemorreoloǵa comparativa. Estudio en diabéticos e hipertensos (2001) Act Bioq Clin Latinoamericana, 35, pp. 63-68
Mori, T., Nishimura, H., Ueyama, M., Kubota, J., Kawamura, K., Comparable effects of angiotensin II and converting enzyme blockade on hemodynamics and cardiac hypertrophy in spontaneously hypertensive rats (1995) Jpn Circ J, 59, pp. 624-630
Arata, Y., Geshi, E., Nomizo, A., Aoki, S., Katagiri, T., Alterations in sarcoplasmic reticulum and angiotensin II receptor type 1 gene expression in spontaneously hypertensive rat hearts (1999) Japanese Circulation Journal, 63 (5), pp. 367-372. , DOI 10.1253/jcj.63.367
Ariyoshi, K., Maruyama, T., Odashiro, K., Akashi, K., Fujino, T., Uyesaka, N., Impaired erythrocyte filterability of spontaneously hypertensive rats (2010) Circ J, 74, pp. 129-136
Aragon-Birlouez, I., Montenay-Garestier, T., Devynck, M.A., Further analysis of cell membrane changes in genetic hypertension in rats by diphenylhexatriene fluorescence polarization (1984) Clinical Science, 66 (6), pp. 717-723
Seki, J., Flow pulsation and network structure in mesenteric microvasculature of rats (1994) Am J Physiol, 266, pp. 811-821
Katiukhin, L.N., Ectacytometry of the erythrocytes in rats of the SHR, WKY and Wistar strains (1994) Zh Evol Biokhim Fiziol, 30, pp. 232-237
Levenson, J., Simon, A., Reoloǵa sangúnea y riesgo cardiovascular (2000) AVFT, 19, pp. 5-10
Casale, C.H., Alonso, A.D.C., Barra, H.S., Brain plasma membrane Na +,K +-ATPase is inhibited by acetylated tubulin (2001) Molecular and Cellular Biochemistry, 216 (1-2), pp. 85-92. , DOI 10.1023/A:1011029125228
Casale, C.H., Previtali, G., Barra, H.S., Involvement of acetylated tubulin in the regulation of Na +,K +-ATPase activity in cultured astrocytes (2003) FEBS Letters, 534 (1-3), pp. 115-118. , DOI 10.1016/S0014-5793(02)03802-4
Casale, C.H., Previtali, G., Serafino, J.J., Arce, C.A., Barra, H.S., Regulation of acetylated tubulin/Na +,K +-ATPase interaction by l-glutamate in non-neural cells: Involvement of microtubules (2005) Biochimica et Biophysica Acta - General Subjects, 1721 (1-3), pp. 185-192. , DOI 10.1016/j.bbagen.2004.11.003, PII S0304416504002879
Santander, V.S., Bisig, C.G., Purro, S.A., Casale, C.H., Arce, C.A., Barra, H.S., Tubulin must be acetylated in order to form a complex with membrane Na +,K +-ATPase and to inhibit its enzyme activity (2006) Molecular and Cellular Biochemistry, 291 (1-2), pp. 167-174. , DOI 10.1007/s11010-006-9212-9
Arce, C.A., Casale, C.H., Barra, H.S., Submembraneous microtubule cytoskeleton: Regulation of ATPases by interaction with acetylated tubulin (2008) FEBS J, 275, pp. 4664-4674
Zampar, G.G., Chesta, M.E., Carbajal, A., Chanaday, N.L., Déaz, N.M., Casale, C.H., Arce, C.A., Acetylated tubulin associates with the fifth cytoplasmic domain of Na( +)/K( +)-ATPase: Possible anchorage site of microtubules to the plasma membrane (2009) Biochem J, 422, pp. 129-1237
Amaiden, M.R., Santander, V.S., Monesterolo, N.E., Campetelli, A.N., Rivelli, J.F., Previtali, G., Tubulin pools in human erythrocytes: Altered distribution in hypertensive patients affects Na( +), K( +)-ATPase activity (2011) Cell Mol Life Sci, 68, pp. 1755-1768
Salvador, J.M., Mata, A.M., Purification of the synaptosomal plasma membrane (Ca2 +Mg2 +)-ATPase from pig brain (1996) Biochem J, 315, pp. 183-187
Skalak, R., Hanss, M., Chien, S., Indices of filterability of red blood cell suspensions (1983) Biorheology, 20 (3), pp. 311-316
Skalak, R., Impelluso, T., Schmalzer, E.A., Chien, S., Theoretical modeling of filtration of blood cell suspensions (1983) Biorheology, 20 (1), pp. 41-56
DeWitt, N.D., Tourinho Dos Santos, C.F., Allen, K.E., Slayman, C.W., Phosphorylation region of the yeast plasma-membrane H +-ATPase: Role in protein folding and biogenesis (1998) Journal of Biological Chemistry, 273 (34), pp. 21744-21751. , DOI 10.1074/jbc.273.34.21744
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principles of dye-protein binding (1976) Anal Biochem, 72, pp. 248-254
Caeiro, X., Hansen, C., Garcia, N., Vivas, L., β-Endorphin involvement in the regulatory response to body sodium overload (2006) Neuroscience, 142 (2), pp. 557-565. , DOI 10.1016/j.neuroscience.2006.06.024, PII S0306452206008530
Fernandez, M.N., Beltramo, D.M., Alonso, A.D.C., Barra, H.S., Conversion of hydrophilic tubulin into a hydrophobic compound. Evidence for the involvement of membrane proteins (1997) Molecular and Cellular Biochemistry, 170 (1-2), pp. 91-98
Goodman, S.R., Kurdia, A., Ammann, L., Kakhniashvili, D., Daescu, O., The human red blood cell proteome and interactome (2007) Experimental Biology and Medicine, 232 (11), pp. 1391-1408. , http://www.ebmonline.org/cgi/reprint/232/11/1391, DOI 10.3181/0706-MR-156
Sudhakar, K., Sujatha, M., Ramana Devi, Ch.V., Reddy, P.P., Erythrocyte sodium and Na +, K +-ATPase activity in untreated hypertensives and their first degree relatives (1998) Indian Journal of Biochemistry and Biophysics, 35 (6), pp. 382-384
Kim, M., Kwon, J., Suh, S., Suh, J., Jung, J., Lee, S., Transgenic overexpression of translationally controlled tumor protein induces systemic hypertension via repression of Na +, K +-ATPase (2008) J Mol Cell Cardiol, 44, pp. 151-159
ISSN:02636352
DOI:10.1097/HJH.0b013e328353b19a