Dynamical characterization of the last prolonged solar minima

The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cionco, R.G
Otros Autores: Compagnucci, R.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15279caa a22013937a 4500
001 PAPER-9184
003 AR-BaUEN
005 20230518203903.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84866740123 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ASRSD 
100 1 |a Cionco, R.G. 
245 1 0 |a Dynamical characterization of the last prolonged solar minima 
260 |c 2012 
270 1 0 |m Cionco, R.G.; Universidad Tecnológica Nacional (UTN), Facultad Regional San Nicolás, Colón 332, San Nicolás de los Arroyos 2900, Buenos Aires, Argentina; email: gcionco@frsn.utn.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Ahluwalia, H.S., Ygbuhay, R.C., Sunspot cycle 24 and the advent of Dalton-like minimum (2012) Adv Astron., 2012, p. 5. , 10.1155/2012/126516 (Article ID 126516) 
504 |a Badalyan, O.G., Obridko, V.N., Sykora, J., Brightness of the coronal green line and prediction for activity cycles 23 and 24 (2001) Sol Phys., 199, pp. 421-435 
504 |a Blizard, J.B., Solar motion and solar activity (1981) Bull Amer Astron Soc., 13, p. 876 
504 |a Brown, E., A possible explanation of the sun-spot period (1900) Mon Not Roy Astron Soc., 60, pp. 599-600 
504 |a Burkhardt, G., On the invariable plane of the solar system (1982) Astron Astrophys., 106, pp. 133-136 
504 |a Charvátová, I., Solar-terrestrial and climatic phenomena in relation to solar inertial motion (1997) Surv Geophys., 18, pp. 131-146 
504 |a Charvátová, I., Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion? (2000) Ann Geophys., 18, pp. 399-405 
504 |a Charvátová, I., Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions (2009) New Astron., 14, pp. 25-30 
504 |a Charvátová, I., Streštík, J., Periodicities between 6 and 16 years in surface air temperature in possible relation to solar inertial motion (2004) J Atm Solar-Terr Phys., 66, pp. 219-227 
504 |a Chambers, J.E., A hybrid symplectic integrator that permits close encounters between massive bodies (1999) Mon Not Roy Astron Soc., 304, pp. 793-799 
504 |a Choudhuri, A.R., Karak, B.B., A possible explanation of the Maunder Minimum from a flux transport dynamo model (2009) Res Astron Astrophys., 9, pp. 953-958 
504 |a Charbonneau, P., Dynamo models of the solar cycle (2010) Living Rev Sol Phys., 7 (3) 
504 |a Charbonneau, P., Dikpati, M., Stochastic fluctuations in a Babcock-Leighton model of the solar cycle (2000) Astroph J., 543, pp. 1027-1043 
504 |a De Jager, C., Duhau, S., Forecasting the parameters of sunspot cycle 24 and beyond (2009) J Atmos Sol Terr Phys., 71, pp. 239-245 
504 |a De Jager, C., Versteegh, G.J.M., Do planetary motions drive solar variability? (2005) Sol Phys., 229, pp. 175-179 
504 |a Duhau, S., De Jager, C., The solar dynamo and its phase transitions during the last millennium (2008) Sol Phys., 25, pp. 1-15 
504 |a Eddy, J., The Maunder Minimum (1976) Science, 192, pp. 1189-1202 
504 |a Fairbridge, R., Shirley, J., Prolonged minima and the 179-yr cycle of the solar inertial motion (1987) Sol Phys., 110, pp. 191-210 
504 |a Feulner, G., Rahmstorf, S., On the effect of a new grand minimum of solar activity on the future climate on Earth (2010) Geophys Res Lett., 37, p. 05707 
504 |a Fränz, M., Harper, D., Heliospheric coordinate system (2002) Planet Space Sci., 50, pp. 217-233 
504 |a Gibson, S.E., Kozyra, J.U., De Toma, G., Emery, B.A., Onsager, T., Thompson J, B.J., (2009) Geophys Res., 114, p. 7. , A09105 doi: 10.1029/2009JA014342 
504 |a Grandpierre, A., On the origin of solar cycle periodicity (1996) Astrophys Space Sci., 243, pp. 393-400 
504 |a Gray, L.J., Beer, J., Geller, M.J., Haigh, D., Lockwood, M., Matthes, K., Cubasch, U., White, W., Solar influences on climate (2010) Rev Geophys., 48, p. 4001. , 10.1029/2009RG000282 
504 |a Hathaway, D.H., Rightmire, L., Variations in the Sun's meridional flow over a solar cycle (2010) Science, 327, pp. 1350-1352 
504 |a Javaraiah, J., Sun's retrograde motion and violation of even-odd cycle rule in sunspot activity (2005) Mon Not Roy Astron Soc., 362, pp. 1311-1324 
504 |a Jose, P., Sun's motion and sunspots (1965) Astron J., 70, pp. 193-200 
504 |a Juckett, D., Solar activity cycles, north/south asymmetries, and Differential rotation associated with solar spin-orbit variations (2000) Sol Phys., 191, pp. 201-226 
504 |a Juckett, D., Temporal variations of low-order spherical harmonic representations of sunspot group patterns: Evidence for solar spin-orbit coupling (2003) Astron Astrophys., 399, pp. 731-741 
504 |a Kane, R.P., Prediction of solar cycle 24 based on the Gnevyshev-Ohl-Kopecky rule and the three-cycle periodicity scheme (2008) Ann Geophys., 26, pp. 3329-3339 
504 |a Karak, B.B., Importance of meridional circulation in flux transport dynamo: The possibility of a maunder-like grand minimum (2010) Astrophys J., 724, pp. 1021-1029 
504 |a Khain, V.E., Khalilov, E.N., About possible influence of solar activity upon seismic and volcanic activities: Long-term forecast Science without borders (2007) Transactions of the International Academy of Science H & e, 3. , SWB, Innsbruck, ISBN 978-9952-451-01-6 ISSN 2070-0334, 2008 
504 |a Lamb, H.H., Uptake of the chronology of assessments of the volcanic dust veil index (1983) Clim Monitor, 12, pp. 79-90 
504 |a Lamb, H.H., (1995) Climate, History and the Modern World, , second ed Routledge, 11 New Fetter Lane, London EC4P 4EE 
504 |a Landscheidt, T.J., Solar rotation, impulses of the torque in the Sun's motion, and climatic variation (1988) Clim Change, 12, pp. 265-295 
504 |a Landscheidt, T., Extrema in sunspots cycle linked to Sun's motion (1999) Sol Phys., 189 (2), pp. 413-419 
504 |a Laskar, J., Large-scale chaos in the solar system (1994) Astron Astrphys., 287, pp. 9-L12 
504 |a Livingston, W., Penn, M., Are sunspots different during this solar minimum? (2009) Eos Trans AGU, 90 (30). , 10.1029/2009EO300001 
504 |a Loehle, C., McCulloch, J.H., Correction to: A 2000-year global temperature reconstruction based on non-tree ring proxies (2008) Energy Environ., 19, pp. 93-100 
504 |a Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Ni, F., Global signatures and dynamical origins of the little ice age and medieval climate anomaly (2009) Science, 27, pp. 1256-1260 
504 |a Nielsen, M.L., Kjeldsen, H., Is cycle 24 the beginning of a Dalton-like minimum? (2011) Sol Phys., 270, pp. 385-392 
504 |a Odintsov, S.D., Ivanov-Kholodnyi, G.S., Georgieva, K., Solar activity and global seismicity of the Earth (2007) Bull Russ Acad Sci.: Phys., 71 (4), pp. 593-595 
504 |a Paluš, M., Kurths, J., Schwarz, U., Seehafer, N., Novotná, D., Charvátová, I., The solar activity cycle is weakly synchronized with the solar inertial motion (2007) Phys Lett A, 365, pp. 421-428 
504 |a Perryman, M.A.C., Schulze-Hartung, T., The barycentric motion of exoplanet host stars Tests of solar spin-orbit coupling (2011) Astron Astrophys., 525, pp. 65-A72 
504 |a Press, W., Teukolsky, S., Vetterling, V., Flannery, B., (1992) Numerical Recipes in FORTRAN: The Art of Scientific Computing, , second ed Cambridge University Press 
504 |a Rozelot, J.P., Damiani, C., Pireaux, S., Probing the solar surface: The oblateness and astrophysical consequences (2009) Astrophys J., 703, pp. 1791-1796 
504 |a Scafetta, N., Empirical evidence for a celestial origin of the climate oscillations and its implications (2010) J Atm and Solar-Terr Phys., , 10.1016/j.jastp 2010.04.015 
504 |a Shirley, J.H., Axial rotation, orbital revolution and solar spin-orbit coupling (2006) Mon Not Roy Astron Soc., 368, pp. 280-286 
504 |a Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J., Unusual activity of the Sun during recent decades compared to the previous 11,000 years (2004) Nature, 431, pp. 1084-1087 
504 |a Solomon, S.C., Woods, T.N., Didkovsky, L.V., Emmert, J.T., Qian, L., Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum (2010) Geophys Res Lett., 37, p. 16103 
504 |a Song, X., Lubin, D., Zhang, G.J., Increased greenhouse gases enhance regional climate response to a Maunder Minimum (2010) Geophys Res Lett., 37, p. 01703. , 10.1029/2009GL041290 
504 |a Strogatz, S.H., Exploring complex networks (2001) Nature, 410, pp. 268-276 
504 |a Stuiver, Q., Quay, P.D., A 1600 year long record of solar change derived from atmospheric 14C levels (1981) Sol Phys., 74, pp. 479-481 
504 |a Takahashi, K., On the relation between the solar activity cycle and the solar tidal force induced by the planets (1968) Sol Phys., 3, pp. 598-602 
504 |a Tan, B., Multi-timescale solar cycles and the possible implications (2011) Astrophys Space Sci., 332, pp. 65-72 
504 |a Usoskin, I.G., A history of solar activity over millennia (2008) Living Rev Sol Phys., 5 (3) 
504 |a Usoskin, I.G., Sokoloff, D., Moss, D., Grand minima of solar activity and the mean-field dynamo (2009) Sol Phys., 254, pp. 345-355 
504 |a Wagner, S., Zorita, E., The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton Minimum (1790-1830): A model study (2005) Clim Dynam., , 10.1007/s00382-005-0029-0 
504 |a Wolf, R., Extract of a letter to Mr Carrington (1859) Mon Not Roy Astron Soc., 19, pp. 85-86 
504 |a Wolff, C.L., Patrone, P.N., A new way that planets can affect the Sun (2010) Sol Phys., 266, pp. 227-246 
504 |a Wood, K.D., Sunspots and planets (1972) Nature, 240, pp. 91-93 
504 |a Wood, R.M., Wood, K.D., Solar motion and sunspot comparison (1965) Nature, 208, pp. 129-131 
520 3 |a The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events) However, at present there is no clear physical mechanism relating these phenomena The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions In particular, at these moments, the radial component of the Sun's acceleration (i.e.; in the barycentre-Sun direction) had an exceptional magnitude These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle This process begins about 40 years before the solar angular momentum inversions, i.e.; before Maunder Minimum, Dalton Minimum, and before the present extended minimum Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima We discuss the possible implications of these results for the solar cycle including the present extended minimum © 2012 COSPAR Published by Elsevier Ltd All rights reserved.  |l eng 
536 |a Detalles de la financiación: PIP PIP 114-201001-00250 
536 |a Detalles de la financiación: ARC/11/09 
536 |a Detalles de la financiación: The authors are indebted to parallel processing facilities of Departamento de Ingeniería Mecánica de UTN-FRSN. The authors acknowledge the support of Grant PID-UTN 1351 “Forzantes externos al planeta y variabilidad climática” of UTN ; and Grant PICT – 2007 – 00438 of ANPCyT of Argentina. RHC is also supported by Grants UBACYT N°:20020100101049, CONICET PIP PIP 114-201001-00250, MINCYT-MEYS ARC/11/09. 
593 |a Universidad Tecnológica Nacional (UTN), Facultad Regional San Nicolás, Colón 332, San Nicolás de los Arroyos 2900, Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Departamento de Ciencias de la Atmósfera y Los Océanos, Ciudad Universitaria, Pabellón II;CABA 1428, Argentina 
690 1 0 |a GRAND MINIMA EVENTS 
690 1 0 |a SOLAR ACTIVITY 
690 1 0 |a SUN-EARTH CONNECTION 
690 1 0 |a SUN-PLANETS INTERACTIONS 
690 1 0 |a DYNAMICAL CHARACTERIZATION 
690 1 0 |a DYNAMICAL PARAMETERS 
690 1 0 |a GRAND MINIMA EVENTS 
690 1 0 |a INTERNAL FLOWS 
690 1 0 |a LONG-TERM VARIATIONS 
690 1 0 |a MAUNDER MINIMUM 
690 1 0 |a ORBITAL ANGULAR MOMENTUM 
690 1 0 |a PHYSICAL MECHANISM 
690 1 0 |a RADIAL COMPONENT 
690 1 0 |a SOLAR ACTIVITY 
690 1 0 |a SOLAR CYCLE 
690 1 0 |a SOLAR CYCLE MODULATION 
690 1 0 |a SOLAR MAGNETIC CYCLE 
690 1 0 |a SOLAR MINIMA 
690 1 0 |a SOLAR PHYSICS 
690 1 0 |a STRONG CORRELATION 
690 1 0 |a SUN-EARTH CONNECTION 
690 1 0 |a ANGULAR MOMENTUM 
690 1 0 |a DYNAMICS 
690 1 0 |a PLANETS 
690 1 0 |a SOLAR ENERGY 
690 1 0 |a SUN 
700 1 |a Compagnucci, R.H. 
773 0 |d 2012  |g v. 50  |h pp. 1434-1444  |k n. 10  |p Adv. Space Res.  |x 02731177  |w (AR-BaUEN)CENRE-3577  |t Advances in Space Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866740123&doi=10.1016%2fj.asr.2012.07.013&partnerID=40&md5=096824d070d1d0b7b83fd6a9fb42fb68  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.asr.2012.07.013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02731177_v50_n10_p1434_Cionco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731177_v50_n10_p1434_Cionco  |y Registro en la Biblioteca Digital 
961 |a paper_02731177_v50_n10_p1434_Cionco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI