Tephrology of the 1932 eruption of the Quizapú volcano in the region of Laguna Llancanelo, Payenia (Mendoza, Argentina)
Tephrology is a broad term that comprises all the aspects related to "tephra" studies (stratigraphy, chronology, petrology, sedimentology, chemistry, Froggat and Lowe, 1990; Lowe and Hunt, 2001) (Fig. 1). In Argentina, tephrological studies have significantly increased recently as a result...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , |
Formato: | Capítulo de libro |
Lenguaje: | Español |
Publicado: |
2012
|
Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | Tephrology is a broad term that comprises all the aspects related to "tephra" studies (stratigraphy, chronology, petrology, sedimentology, chemistry, Froggat and Lowe, 1990; Lowe and Hunt, 2001) (Fig. 1). In Argentina, tephrological studies have significantly increased recently as a result of the increment in the Southern Andes volcanic activity affecting the country in the last two decades (E.g.: Corbella et al., 1991a,b; Stern, 1991; Mazzoni and Destéfano, 1992; Nillni et al., 1992; Gonzalez Ferrán, 1993; Naranjo et al., 1993; Scasso et al., 1994; Nillni and Bischene, 1995; Haberle and Lumley, 1998; Villarosa et al., 2002; Kilian et al., 2003; Naranjo and Stern, 2004; Orihashi et al., 2004; Stern, 2004; Scasso and Carey, 2005; Daga et al., 2008; Watt et al., 2009; Martin et al., 2009; Leonard et al., 2009; Rovere et al., 2009, 2011; Wilson et al., 2009, 2012). The eruption of Quizapú volcano (Volcanic Complex Azul-Descabezado Grande, Province of Talca, Chile, 36,67°S-70,77°W, maximum height of 3788 m a.s.l.), that occurred on April 10, 1932, represented one of the largest eruptions worldwide in the 20th Century. It affected extensive regions of Argentina as well as many coastal areas of the Southwestern Atlantic Ocean as a result of the prevailing westerly winds, and specifically impacted dramatically in regions located nearby the source volcano (Department of Malargüe, Province of Mendoza, west-central Argentina, Fig. 2). The wide spreading of the resulting tephras and its easy reconnaissance in the field provides a great opportunity for detailed studies about the eruption and its products. Results on the eruptive aspects and tephras dispersion and deposition from this eruption were published by some authors (Lunkenheimer, 1932; Kittl, 1933; Walker, 1981, Hildreth and Drake, 1992, González Ferrán, 1993; Ruprecht and Bachmann, 2010; Ruprecht et al., 2012). In this contribution the sedimentological, mineralogical and chemical characteristics of the tephra deposits occurring at the Llancanelo Lake and surroundings, located 140 km east (downwind) of the Quizapú volcano, are studied based on grain-size, petrographic and electron microscope analysis (SEM) as well as semiquantitative chemical determinations by Energy Dispersive Spectrometer (EDS). The obtained results, when compared with the results of analyses performed by other authors in tephras from the 1932 eruption of the Quizapú volcano, allow attributing the studied tephra layer to this eruption. On these bases, diverse aspects related to the depositional and post-depositional aspects of the tephras are herein discussed, as well as some environmental changes produced by the eruption. On the other hand, this paper contributes to a systematic and comparative classification of volcanic hazard in health and society that serves as base-studies for better understanding other more recent Southern Andes eruptive events that affected Argentina (Hudson, Copahue, Chaitén, Llaima, Peteroa and Puyehue-Cordón Caulle volcanoes). The eruption of Quizapú volcano in 1932 was one of the most important events among a long history of activity of this volcanic complex (Smithsonian Institution, 2012). It had a plinian character and threw into the atmosphere enormous amounts of tephras varying between 5 and 30 km3 according to different authors (Kittl, 1933; González Ferrán, 1993; Hildreth and Drake, 1992; Ruprecht and Bachmann, 2010), producing a dramatic impact in society, agriculture and local economies in the downwind neighboring affected regions (Abraham and Prieto, 1993; González Ferrán, 1993). The tephra deposits were very uniform in thickness with a notable decreasing grain-size tendency with distance from the source volcano, ranging from 6 cm in neighboring areas and reaching silt and clay sizes around 100 km east (Kittl, 1933; Hildreth and Drake, 1992). The horizon of tephras was recognized as a regional level in a number of natural outcrops pits and excavations, as well as in sediment cores recovered from short drillings (Fig. 3). The tephra level was affected by compaction and post-depositional transformations after 80 years of burying and exposure to weathering and pedogenetic processes, although most of the original characteristics are very well preserved. The sedimentary sequence in which the tephra level is included was recognized regionally by surface and subsurface surveys based on geoelectrical methods and short drillings (Violante et al., 2010; Osella et al., 2010, 2011; de la Vega et al., 2012). The sequence is composed of light brown sandy-silty sediments of lacustrine and eolian origin with high volcaniclastic content and interbedding of buried soils and evaporites (Rovere et al., 2010a,b; D'Ambrosio et al., 2011). In some profiles (P19 and P42, Fig. 3) located in marginal areas east of the lake, the tephra layer overlies lacustrine deposits and is in turn covered by eolian deposits; this indicates that the lake borders were filled with tephra during the eruption and definitively desiccated, and were later covered by eolian deposits probably as a result of the aridity of the climate that followed the eruption. On the other hand, in the lacustrine plain west of the lake the tephra layer was not found; a possible explanation for this is either post-depositional erosive processes or not deposition, as some places could have been, at the moment of the eruption, part of the lacustrine body with higher water energy, and therefore the ash was dispersed without leaving any recognizable deposit. Northwest of the lake, the tephra deposit was found overlying a buried soil containing burned vegetation remains (profile P45, Fig. 3), suggesting high temperatures of the ash fall with consequent burning of vegetation, as it was also documented in other regions of the world (Carson et al., 1990; Seymour et al., 1993). In the lacustrine coastal plain of the lake, tephra layers were found overlying eolian deposits (profiles P5, P21 and P26, Fig. 3). Tephra's grain-size indicates varied sizes between very fine and medium sand. Sediments are poorly sorted and statistical grain-size distributions (Table 1, Fig. 4) are bimodal with two well-marked populations separated at the size-range of 3-3,5 φ (88- 125 μm). Population 1 is coarser with mode between 1 and 2 φ (250 to 500 μm), whereas Population 2 is finer with mode between 4 and 7 φ (63 to 8 μm). This bimodal distribution is typical for distal tephras (Bonadonna and Houghton, 2005; Rose and Durant, 2009). The lower-sized population contains the "respirable particles" (PM10 <10 μm, Horwell et al., 2003, Horwell and Baxter, 2006). Optical microscopy allowed obtaining the bulk mineralogical composition and details of the ash shards. Bulk composition is: 59% volcanic glass, 40% crystals (in decreasing order: plagioclases, magnetite, hornblende, pyroxenes, quartz, olivine and ilmenite) and 1% lithoclasts (possibly andesitic volcanic pastes). Glass is mainly composed of fibrous, pumiceous shards with vesicular microcavities, most of them tubular and elongated with minor amount of cuspate, blocky and platy individuals (Figs. 5, 6 and 7). Besides, the minerals contain vesiculated glass adhered to the crystals. SEM analyzes were aimed at observing details of the particle's shapes and surface characteristics. They are all of varied shapes ranging from equidimensional, elongated (prismatic) and irregular, from rounded to angular with sharp edges, with striations and different degrees of vesicularity (Figs. 6 and 7). Glass shards show a major composition of light brown glass (possibly sideromelano) although dark glass is also present, and they show some coating. Its vitreous textures were defined following the clasification by Miwa et al. (2009), as massive with two types of surfaces, smooth-uniform (S-type) and not-smooth-irregular (NS-type) with alveoli and hollows (Fig. 7). The coating consists of highly cohesive small particles (<25 μm, and hence they correspond to the "respirable" sizes) which can be partially adhered by some melting process to the larger particles. EDS revealed predominance (in decreasing order) of SiO2 (up to ~70%), Al2O3 (up to ~15%), with lesser amounts of K, Na, Ca, Zn, Mg, Cu, Fe y Ti (Fig. 7, Table 2). The three last mentioned components are abundant as oxides included in the ash. K is an important component in accordance to the high K content of the Volcanic Complex Cerro Azul - Descabezado Grande - Quizapú (Backlund, 1923), which seems to have been proportionally increased in percentage by desilication of the tephra during transport (Aomine and Wada, 1962). On the other hand, high concentrations of Cu were found in some samples (Fig. 8, samples P5 III and P20 I in Table 2), what is preliminary associated to postdepositional alteration of tephras by weathering and transformation in alofana and halloysite with incorporation of high Cu content. © Asociación Argentina de Sedimentología. |
---|---|
Bibliografía: | Abraham, E.M., Prieto, M.R., (1993) Vulcanismo y Procesos de Desertificación en El sur de Mendoza. la Erupción Del Quizapú de 1932 y Sus Efectos Ambientales. Primeras Jornadas Nacionales de Vulcanología, Medio Ambiente y Defensa Civil, pp. 45-53. , Asociación Geológica de Mendoza-Ministerio del Interior- Ministerio de Medio Ambiente de Mendoza-Subsecretaria de Ciencia y Técnica Aomine, S., Wada, K., Differential weathering of volcanic ash and pumice, resulting in formation of hydrated halloysite (1962) The American Mineralogist, 47, pp. 1024-1048 Arias, N., Arizmendi, A., Bitschene, P., Fernández, M., Giacosa, M., Griznik, M., Márquez, M., Nillni, A., La erupción del volcán Hudson y sus efectos inmediatos en la Patagonia argentina (Provincia de Santa Cruz) (1992) Primera Reunión Argentina de Mineralogía y Metalogenia Actas, pp. 9-18 Auer, V., The Quaternary history of Fuego-Patagonia (1960) Proceedings of the Royal Society of London, 949, 152p Backlund, H., Der magmatische Anteil del Cordillere von Sued Mendoza (1923) Acta de la Academia Aboensis, Mathematica et Physica, 2, pp. 1-298 Betejtin, A., (1977) Curso de Mineralogía, 747p. , Editorial MIR, Moscú Bonadonna, C., Houghton, B.F., Total grain-size distribution and volumen of tephra-fall deposits (2005) Bulletin of Volcanology, 67, pp. 441-456 Bonadonna, C., Phillips, J., Sedimentation from strong Volcanic Plumes (2003) Journal of Geophysical Research, 108 (B7), p. 2340 Brazier, S., Sparks, R.S.J., Carey, S.N., Sigurdsson, H., Westgate, J.A., Bimodal grain size distribution and secondary thickening in air-fall ash layers (1983) Nature, 301 (5896), pp. 115-119 Carey, R.J., Houghton, B.F., Thordarson, T., Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland (2009) Bulletin of Volcanology, 72 (3), pp. 259-278 Carson, H.L., Lockwood, J.P., Craddock, E.M., Extinction and recolonization of local populations on a growing shield volcano (1990) Population Biology, 87, pp. 7055-7057 Casadevall, T.J., (1991) First International Symposium on Volcanic Ash and Aviation Safety, p. 1065. , Seattle, Washington, July 8-12, 1991. U.S. Geological Survey, Circular Corbella, H., Scasso, R.A., Lucero, M., Palacios, M.E., Tiberi, P.E., Rial, P., Pérez, D., Erupción del Volcán Hudson - Agosto de 1991. Efectos sobre el territorio de la Provincia de Santa Cruz (1991) Publicación Científica de la Universidad Federal de la Patagonia Austral, 4, pp. 1-15 Corbella, H., Scasso, R.A., Rial, P., Palacios, M.E., Lucero, M., Tiberi, P.E., Pérez, D., Hudson (1991) Bulletin of the Global Volcanism Network, 16, pp. 2-3 Daga, R., Ribeiro Guevara, S., Sánchez, M.L., Arribere, M., Source identification of volcanic ashes by geochemical analysis of well-preserved lacustrine tephras in Nahuel Huapi National Park (2008) Applied Radiation and Isotopes, 66, pp. 1325-1336 Daga, R., Ribeiro Guevara, S., Sánchez, M., Arribere, M., Tephrochronology of recent events in the Andean Range (Northern Patagonia): Spatial distribution and provenance of lacustrine ash layers in the Nahuel Huapi National Park (2010) Journal of Quaternary Science, 25, pp. 1113-1123 D'Ambrosio, D.S., Violante, R.A., Garcia, A., Rovere, E.I., Análisis de testigos de la planicie lacustre occidental de la laguna Llancanelo, Mendoza (2011) XVIII Congreso Geológico Argentino, , Neuquén (H. Leanza, M. Franchini, A. Impiccini, G. Pettinari, M. Sigismondi, J. Pons y M. Tunik, Eds.), Actas CD ISBN 978-987-22403-4-9 De La Vega, M., Lopez, E., Osella, A., Rovere, E.I., Violante, R.A., Quaternary volcanic-sedimentary sequences and evolution of the Llancanelo lake region (Southern Mendoza, Argentina) evidenced from geoelectric methods (2012) Journal of South American Earth Sciences, 40, pp. 116-128 Delmelle, P., Gerin, P., Oskarsson, N., (1980) Surface and Bulk Studies of Leached and Unleached Volcanic Ashes, , EOS Transaction, American Geophysical Union 81 -F1311 Delmelle, P., Lambert, M., Dufresne, Y., Gerin, P., Oskarsson, N., Gas aerosolash interaction in volcanic plumes: New insights from surface analysis of fine ash particles (2007) Earth and Planetary Science Letters, 259, pp. 159-170 Fierstein, J., Hildreth, W., The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska (1992) Bulletin of Volcanology, 54 (8), pp. 646-684 Fierstein, J., Bruggman, P.E., Bartel, A.J., Stewart, K.C., Taggart Jr., J.E., Drake, R.E., Hildreth, W., (1989) Chemical Analyses of Rocks and Sediments from Central Chile, 13p. , http://pubs.usgs.gov/of/1989/0078/report.pdf, U.S. Geological Survey, Open file Report 89-78 Froggatt, P.C., Lowe, D.J., A review of late Quaternary silicic and some other tephra formations from New Zealand: Their stratigraphy, nomenclature, distribution, volume, and age (1990) New Zealand Journal of Geology and Geophysics, 33, pp. 89-109 Gislason, S.R., Hassenkamb S, T., Bovetb, N.N., Eiriksdottira, E.S., Alfredssona, H.A., Hemb, C.P., Baloghb, Z.I., Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment (2011) PNAS, 108 (18), p. 7311. , www.pnas.org/cgi/doi/10.1073/pnas.1015053108 González Ferrán, O., Principales erupciones volcánicas en los Andes meridionales. Fuentes potenciales de peligros naturales y su impacto en el medio ambiente (1993) Primeras Jornadas Nacionales de Vulcanología, Medio Ambiente y Defensa Civil, pp. 11-19. , Asociación Geológica de Mendoza-Ministerio del Interior-Ministerio de Medio Ambiente de Mendoza- Subsecretaria de Ciencia y Técnica González-Ferrán, O., (1995) Volcanes de Chile, 640p. , Instituto Geográfico Militar, Santiago Groeber, P., (1929) Líneas Fundamentales de la Geología Del Neuquén, sur de Mendoza y Regiones Adyacentes, 109p. , Dir. Gral. de Minas, Geología e Hidrología, Buenos Aires, Pub. No 58 Haberle, S., Lumley, S., Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S (1998) Journal of Volcanology and Geothermal Research, 84, pp. 239-256 Heiken, G., Tuff rings: Examples from the Fort Rock - Christmas Lake Valley basin, south central Oregon (1971) Journal of Geophysical Research, 76, pp. 5615-5626 Heiken, G., Morphology and Petrography of volcanic ashes (1972) Geological Society of America Bulletin, 83, pp. 1961-1988 Hildreth, W., Drake, R.E., Volcán quizapu, chilean andes (1992) Bulletin of Volcanology, 54 (2), pp. 93-125 Horwell, C.J., Baxter, P.J., The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation (2006) Bulletin of Volcanology, 69, pp. 1-24 Horwell, C.J., Sparks, R.S.J., Brewer, T.S., Llewellin, E.W., Williamson, B.J., Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards (2003) Bulletin of Volcanology, 65, pp. 346-362 Imbellone, P.A., Camilion, M.A., Characterization of the buried tephra layer in soils in Argentina (1988) Pèdologie, 28, pp. 155-171 Kilian, R., Hohner, M., Biester, H., Wallrabe-Adams, H.J., Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53-55°S) (2003) Revista Geológica de Chile, 30 (1), pp. 23-37 Kittl, E., (1933) Estudio Sobre Los Fenómenos Volcánicos y Material Caído Durante la Erupción Del Grupo Del "descabezado", en El Mes de Abril de 1932, pp. 321-364. , Anales del Museo Nacional de Historia Natural "Bernardino Rivadavia" Buenos Aires, tomo XXXVII, Mineralogía y Geología, Publ. N° 13 Kreutz, S., Jurek, M., Cendres volcaniques tombées en Avril 1932 á Buenos Aires (1932) Polskiego Towarzystwo Geologiczna Rocznik (Krakow), 8, pp. 316-330 Landaeta, A., López, C.A., Alvarado, A., Caracterización de la fracción mineral de suelos derivados de cenizas volcánicas de la Cordillera de Talamanca, Costa Rica (1978) Agronomía Costarricense, 2 (2), pp. 117-129 Larsson, W., Vulkanische Asche vom Ausbruch des Chilenischen Vulkans Quizapú (1932) in Argentina gesammelt (1937) Bulletin Geological Institution of Uppsala, 26, pp. 27-52 Leonard, G.S., Wilson, T.M., Stewart, C., Johnston, D., Baxter, P.J., Rovere, E.I., Villarosa, G., Lessons learned from the May 2008 to present eruption of volcán Chaitén, Chile. Emergency Management, evacuation, welfare and recovery (2009) Geological Society of America, Annual Meeting 2009, Portland (Oregon, USA), pp. 164-122. , Session on Risks and Realities: Current Advances in Understanding Societal Risk and Resilience to Natural Hazards II. Abstracts, Paper No Lowe, D.J., Hunt, J.B., A summary of terminology used in tephra-related studies (2001) Tephras: Chronology, Archaeology, 1, pp. 17-22. , Juwigne, E.T. y Raynal, J-P. (Eds), CDERAD editeur, Gaudet. Les Dossiers de I'Archeo-Logis Lunkenheimer, F., La erupción del Quizapu en abril de 1932. Revista Astronómica Buenos Aires 4:173-182 Maria, A. y S. Carey, 2002. Using fractal analysis to quantitatively characterize the shapes of volcanic particles (1932) Journal of Geophysical Research, 107 (B11), p. 2283. , doi 10.1029.2001Jb000822 Martin, R.S., Watt, S.F.L., Pyle, D.M., Mather, T.A., Matthews, N.E., Georg, R.B., Day, J.A., Quayle, B.M., Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption (2009) Journal of Volcanology and Geothermal Research, 184, pp. 462-472 Mazzoni, M.M., Destéfano, M.C., Depositación sineruptiva y reelaboración temprana. Depósitos de caída de ceniza de la erupción 1991 del volcán Hudson (1992) Cuarta Reunión Argentina de Sedimentología, Actas, 1, pp. 203-210. , La Plata Miwa, T., Toramaru, A., Iguchi, M., Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan (2009) Journal of Volcanology and Geothermal Research, 184 (3-4), pp. 473-486 Naranjo, J.A., Stern, C.R., Holocene explosive activity of Hudson Volcano, southern Andes (1998) Bulletin of Volcanology, 59, pp. 291-306 Naranjo, J.A., Stern, C.R., Holocene tephrochronology of southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone (2004) Revista Geológica de Chile, 31 (2), pp. 225-240 Naranjo, J.A., Moreno, H., Banks, N.G., La erupción del volcán Hudson en 1991 (46°S), Región XI, Aisén, Chile. Servicio Nacional de Geología y Minería, Chile (1993) Boletín, 44, pp. 1-50 Newhall, C.G., Self, S., The Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism (1982) Journal of Geophysical Research (Oceans and Atmospheres), 87, pp. 1231-1238 Nillni, A., Bitschene, P., Sedimentología y procesos de depositación de la tefra de caída de la erupción del volcán Hudson en agosto 1991 (1995) The August 1991 Eruption of the Hudson Volcano (Patagonian Andes): A Thousand Days after, pp. 116-134. , J. Mendía y P. Bitschene (Eds), Publicación Especial, Universidad Nacional de la Patagonia San Juan Bosco y Servicio Nacional de Geología, Comodoro Rivadavia, Argentina Nillni, A., Fernández, M., Arizmendi, A., Arias, N., Rodríguez, M., Bitschene, P., Volcán Hudson: estudio granulométrico y composicional del material piroclástico eyectado (1992) Cuarta Reunión Argentina de Sedimentología, Actas, 3, pp. 73-80. , La Plata Orihashi, Y., Naranjo, J.A., Motoki, A., Sumino, H., Hirat, D., Anma, R., Nagao, K., Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K-Ar ages (2004) Revista Geológica de Chile, 31, pp. 207-224 Osella, A., De La Vega, M., Lopez, E., Rovere, E.I., Violante, R.A., Characterizing volcanic features using a frequencydomain Electromagnetic Induction System (2010) The Meeting of the Americas, 91 (26). , American Geophysical Union, Foz de Iguazu, Brasil, Eos Transactions AGU, Abstract NS11B Osella, A., De La Vega, M., López, E., Rovere, E.I., Violante, R.A., Caracterización de secuencias sedimentarias lacustres y estructuras volcánicas en base a métodos geofísicos, laguna Llancanelo, Mendoza (2011) XVIII Congreso Geológico Argentino, , Actas CD, Neuquén Ovando, E., Ramires, A., Recuerdos de Ceniza "el impacto de la Erupción del Quizapu (1932) en Malargüe a través de testimonios orales" (2009) IX Encuentro Nacional y III Congreso Internacional de Historia Oral de la República Argentina, 29p. , "Los usos de la Memoria y la Historia Oral". Buenos Aires Reich, M., Zúñiga, A., Arrigo, A., Vargas, G., Morata, D., Palacios, C., Parada, M.A., Garreaud, R.D., Formation of cristobalite nanofibers during explosive volcanic eruptions (2009) Geology, 37, pp. 435-438 Rose, W.I., Durant, A.J., Fine ash content of explosive eruptions (2009) Journal of Volcanology and Geothermal Research, 186 (1-2), pp. 32-39 Rovere, E.I., Flores, G., Volcanic Ash Advisory systems (VAAC), Llaima volcano eruption (2/1/08) (2008) IAVCEI General Assembly, , Abstracts: 2-D PO2. Reykjavic, Islandia Rovere, E.I., Violante, R.A., Mendía, J., The Argentine volcaniclastic stratigraphy: Regional framework and multidisciplinary approach for its study and mapping (2006) E-ICES 2, Malargüe, pp. 47-56. , Mendoza, Volumen final Rovere, E.I., Violante, R.A., Rovere, M.R., Benedetti, R., Nuñez, P.E., Wilson, T., Stewart, C., Volcanismo activo, tefrología, interacción con los ecosistemas y su impacto en la salud pública. Incidencia del Volcán Chaitén en territorio argentino (2009) E-ICES 5, pp. 111-112. , Acta de Resúmenes, Malargüe Rovere, E.I., Violante, R.A., Osella, A., De La Vega, M., Romano, A., Sedimentological characteristics of the Quizapú Volcano ashes erupted in 1932, Llancanelo lake region, Mendoza (Argentina) (2010) 18th International Sedimentological Congress, , CD ISBN 978-987-96296-4-2, Abstract ID N° 405. Mendoza Rovere, E.I., Violante, R.A., Osella, A., De La Vega, M., López, E., Reconstruction of the evolutive stages of Llancanelo Lake and surroundings (southern Mendoza province, western Argentina) (2010) GeoSur 2010, International Geological Congress on the Southern Hemisphere, 51, pp. 196-198. , Mar del Plata. Bollettino di Geofisica Rovere, E.I., Stewart, C., Baxter, P.J., Wilson, T., Leonard, G., Johnston, D., Nuñez, P.E., Romano, A., Evaluación de los impactos producidos por las cenizas del volcán Chaitén (2011) XVIII Congreso Geológico Argentino, , Neuquén, Actas CD ISBN 978-987-22403-4-9 Ruprecht, P., Bachman, O., Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes (2010) Geology Geological Society of America, 38 (10), pp. 919-922 Ruprecht, P., Bergantz, G.W., Cooper, K.M., Hildreth, W., The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity (2012) Journal of Petrology, 53 (4), pp. 801-840 Scarpa, R., Buceta, M.G., Romano, A., Inferencias paleoclimáticas utilizando gasterópodos, ostrácodos y diatomeas del Cuaternario de la laguna de Llancanelo, Mendoza (2008) XVII Congreso Geológico Argentino, Actas, 2, pp. 1047-1048. , S.S. de Jujuy Scasso, R.A., Carey, S., Morphology and formation of glassy volcanic ash from the August 12-15, 1991 eruption of Hudson Volcano, Chile. LAJSBA (2005) Latin American Journal of Sedimentology and Basin Analysis, 12 (1), pp. 3-21 Scasso, R.A., Corbella, H., Tiberti, P., Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano (1994) Bulletin of Volcanology, 56, pp. 121-132 Seymour, V.A., Hinckley, T.M., Morikaua, Y., Franklin, J.F., Foliage damage in coniferous trees following volcanic ashfall from Mt. St. Helens (1993) Oecologia, 59 (2-3), pp. 339-343 Simkin, T., Siebert, L., (1994) Volcanoes of the World, 368p. , 2nd. Edition. Geoscience Press in association with the Smithsonian Institution, Global Volcanism Program, Tucson, Arizona (2012) Global Volcanism Program, , http://www.volcano.si.edu/world/list.cfm, Smithsonian Institution Stern, C.R., Mid-Holocene tephra on Tierra del Fuego (54oS) derived from the Hudson volcano (46oS): evidence for a large explosive eruption (1991) Revista Geológica de Chile, 18, pp. 139-146 Stern, C.R., Active Andean volcanism: Its geologic and tectonic setting (2004) Revista Geológica de Chile, 31 (2), pp. 161-206 Villarosa, G., Outes, V., Ostera, H.A., Ariztegui, D., Tefrocronología de la Transición Tardío Glacial-Holoceno en el Lago Mascardi, Parque Nacional Nahuel Huapi, Argentina (2002) XV Congreso Geológico Argentino, 2, pp. 699-704. , El Calafate, Santa Cruz, Tomo Violante, R.A., Osella, A., De La Vega, M., Rovere, E.I., Osterrieth, M.L., Paleoenvironmental reconstruction in the western lacustrine plain of Llancanelo Lake, Mendoza (2010) Journal of South America Earth Sciences, 29, pp. 650-664 Walker, G.P.L., Plinian eruptions and their products (1981) Bulletin of Volcanology, 44 (3), pp. 223-240 Walkley, A.E., Black, I.A., An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method (1934) Soil Science, 37, pp. 29-38 Watt, S.F.L., Pyle, D.M., Mather, T.A., Martin, R.S., Matthews, N.E., Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile (2009) Journal of Geophysical Research, 114, pp. B04207. , doi 10.1029/2008JB006219 Wilcox, R., (1959) Some Effects of Recent Volcanic Ash Falls with Special Reference to Alaska, , Geological Survey, Bulletin 1028-N. Washington D.C Wilson, T.M., Leonard, G.S., Stewart, C., Villarosa, G., Rovere, E.I., Baxter, P.J., Johnston, D., Cronin, S.J., Impacts on Critical Infrastructure following the May 2008 Chaitén Eruption in Patagonia (2009) Geological Society of America, Annual Meeting 2009, pp. 164-120. , Portland (Oregon, USA). Session on Risks and Realities: Current Advances in Understanding Societal Risk and Resilience to Natural Hazards II. Abstracts, Paper No Wilson, T., Stewart, C., Bickerton, H., Baxter, P.J., Outes, V., Villarosa, G., Rovere, E.I., (2012) The Health and Environmental Impacts of the June 2011 Puyehue-Cordón Caulle Volcanic Complex Eruption: A Preliminary Report, , GNS Science Report 2012/20 Witham, C.S., Oppenheimer, C., Horwell, C.J., Volcanic ash-leachates: A review and recommendations for sampling methods (2005) Journal of Volcanology and Geothermal Research, 141, pp. 299-326 Wohletz, K.H., Evolution of tuff cones and tuff rings (1979) Geological Society of America, 11, p. 543. , Abstracts Wohletz, K.H., Krinsley, D., Scanning electron microscopy of basaltic hydromagmatic ash (1982) Scanning Electron Microscopy in Geology, (1978), 26p. , B. Whaley Y D. Krinsley (Eds.), Geo. Abstracts, Inc., Norwich, England. Also in: Los Alamos National Laboratory Report, LA-UR 82-1433 |
ISSN: | 16697316 |