Scaling laws in the quantum-to-classical transition in chaotic systems

We study the quantum-to-classical transition in a chaotic system surrounded by a diffusive environment. First, we analyze the emergence of classicality when it is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a tran...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wisniacki, D.A
Otros Autores: Toscano, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We study the quantum-to-classical transition in a chaotic system surrounded by a diffusive environment. First, we analyze the emergence of classicality when it is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum to classical behavior that scales with eff2 D, where eff is the effective Planck constant and D is the strength of the noise. However, it was recently shown that a different scaling law controls the quantum-to-classical transition when it is measured comparing the corresponding phase-space distributions. Then, we discuss the meaning of both scalings in the precise definition of a frontier between the classical and quantum behaviors. Finally, we show that there are quantum coherences that the Renyi entropy is unable to detect, which questions its use in studies of decoherence. © 2009 The American Physical Society.
Bibliografía:Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.O., (2003) Decoherence and the Appearance of A Classical World in Quantum Theory, , Springer, Berlin
Zurek, W.H., (2003) Rev. Mod. Phys., 75, p. 715. , 10.1103/RevModPhys.75.715
Pattanayak, A.K., Sundaram, B., Greenbaum, B.D., (2003) Phys. Rev. Lett., 90, p. 014103. , 10.1103/PhysRevLett.90.014103
Toscano, F., De Matos Filho, R.L., Davidovich, L., (2005) Phys. Rev. A, 71, p. 010101. , 10.1103/PhysRevA.71.010101
Zurek, W.H., Paz, J.P., (1994) Phys. Rev. Lett., 72, p. 2508. , 10.1103/PhysRevLett.72.2508
Monteoliva, D., Paz, J.P., (2000) Phys. Rev. Lett., 85, p. 3373. , 10.1103/PhysRevLett.85.3373
Monteoliva, D., Paz, J.P., (2001) Phys. Rev. e, 64, p. 056238. , 10.1103/PhysRevE.64.056238
Gammal, A., Pattanayak, A.K., (2007) Phys. Rev. e, 75, p. 036221. , 10.1103/PhysRevE.75.036221
Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A., (1991) Weak Chaos and Quasi-Regular Patterns, , Cambridge University Press, Cambridge, England
Toscano, F., Wisniacki, D.A., (2006) Phys. Rev. e, 74, p. 056208. , 10.1103/PhysRevE.74.056208
Cucchietti, F.M., Dalvit, D.A.R., Paz, J.P., Zurek, W.H., (2003) Phys. Rev. Lett., 91, p. 210403. , 10.1103/PhysRevLett.91.210403
Jalabert, R.A., Pastawski, H.M., (2001) Phys. Rev. Lett., 86, p. 2490. , 10.1103/PhysRevLett.86.2490
F. Toscano and D. A. Wisniacki (unpublished)
ISSN:15393755
DOI:10.1103/PhysRevE.79.025203