Langlands duality in liouville-H3 + WZNW correspondence
We show a physical realization of the Langlands duality in correlation functions of H+ 3 WZNW model. We derive a dual version of the StoyanovkyRiabultTeschner (SRT) formula that relates the correlation function of the H+ 3 WZNW and the dual Liouville theory to investigate the level duality k - 2 → (...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | We show a physical realization of the Langlands duality in correlation functions of H+ 3 WZNW model. We derive a dual version of the StoyanovkyRiabultTeschner (SRT) formula that relates the correlation function of the H+ 3 WZNW and the dual Liouville theory to investigate the level duality k - 2 → (k - 2)-1 in the WZNW correlation functions. Then, we show that such a dual version of the {ARS}H-3+{ARS}-Liouville relation can be interpreted as a particular case of a biparametric family of nonrational conformal field theories (CFT's) based on the Liouville correlation functions, which was recently proposed by Ribault. We study symmetries of these new nonrational CFT's and compute correlation functions explicitly by using the free field realization to see how a generalized Langlands duality manifests itself in this framework. Finally, we suggest an interpretation of the SRT formula as realizing the DrinfeldSokolov Hamiltonian reduction. Again, the Hamiltonian reduction reveals the Langlands duality in the H+ 3 WZNW model. Our new identity for the correlation functions of H+ 3 WZNW model may yield a first step to understand quantum geometric Langlands correspondence yet to be formulated mathematically. © 2009 World Scientific Publishing Company. |
|---|---|
| Bibliografía: | Nakayama, Y., (2004) Int. J. Mod. Phys. A, 19, p. 2771. , arXiv:hep-th/0402009 Teschner, J., (1999) Nucl. Phys. B, 546, p. 390. , arXiv:hep-th/9712256 Teschner, J., (2001) Phys. Lett. B, 521, p. 127. , arXiv:hep-th/0108121 Andreev, O., (1995) Phys. Lett. B, 363, p. 166. , arXiv:hep-th/9504082 S. Ribault and J. Teschner, J. High Energy Phys. 0506, 014 (2005), arXiv:hepth/0502048; Stoyanovsky, A., A relation between the Knizhnik-Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations, arXiv:mathph/0012013 Fateev, V., Relation between Sine-Liouville and Liouville correlation functions unpublished; T. Takayanagi, J. High Energy Phys. 07, 050 (2005), arXiv:hep-th/0503237; Nakamura, S., Niarchos, V., J. High Energy Phys, 10. , 025 2005, arXiv:hepth/0507252 D. Sahakyan and T. Takayanagi, J. High Energy Phys. 06, 027 (2006), arXiv:hepth/0512112; V. Niarchos, J. High Energy Phys. 03, 045 (2006), arXiv:hep-th/0512222; Giribet, G., (2006) Nucl. Phys. B, 737, p. 209. , arXiv:hep-th/0511252 G. Giribet and Y. Nakayama, Int. J. Mod. Phys. A 21, 4003 (2006), arXiv:hepth/0505203; Maldacena, J., Ooguri, H., (2002) Phys. Rev. D, 65, p. 106006. , arXiv:hep-th/0111180 S. Ribault, J. High Energy Phys. 0509, 045 (2005), arXiv:hep-th/0507114; S. Ribault, J. High Energy Phys. 06, 015 (2006), arXiv:hep-th/0512238; K. Hosomichi and S. Ribault, J. High Energy Phys. 01, 057 (2007), arXiv:hepth/0610117; S. Ribault, J. High Energy Phys. 01, 004 (2008), arXiv:0708.3028; V. Fateev and S. Ribault, J. High Energy Phys. 02, 024 (2008), arXiv:0710.2093; Y. Hikida and V. Schomerus, H3 + WZNW model from Liouville field theory, arXiv:0706.1030; Y. Hikida and V. Schomerus, Structure constants of the OSP(1|2) WZNW model, arXiv:0711.0338; S. Ribault, A family of solvable nonrational conformal field theories, arXiv:0803.2099; Bouwknegt, P., Schoutens, K., (1993) Phys. Rep, 223, p. 183. , arXiv:hep-th/9210010 Gaitsgory, D., Informal introduction to geometric Langlands (2004) An Introduction to the Langlands Program, , eds. J. Bernstein and S. Gelbart Birkhäuser, Boston, Chap. 6 E. Frenkel, Lectures on the Langlands program and conformal field theory, Lectures delivered at the Les Houches School on Number Theory and Physics, March 2003, and at the DARPA Workshop on Langlands Program and Physics, Institute for Advanced Study, March 2004, arXiv:hep-th/0512172; Frenkel, E., Ramifications of the geometric Langlands program Proc. CIME Summer School on Representation Theory and Complex Analysis, Venice, June 2004, arXiv:math/0611294 Frenkel, E., Lectures on Wakimoto modules, opers and the center at the critical level, arXiv:math/0210029 M. Tan, J. High Energy Phys. 0803, 033 (2008), arXiv:0710.5796; M. Tan, Gauging spacetime symmetries on the worldsheet and the geometric Langlands program - II, arXiv:0804.0804; Feigin, B., Frenkel, E., Reshetikhin, N., (1994) Commun. Math. Phys, 166, p. 27. , arXiv:hep-th/9402022 Bershadsky, M., Ooguri, H., (1989) Commun. Math. Phys, 126, p. 49 Feigin, B., Frenkel, E., (1992) Int. J. Mod. Phys. A, 7 S1A, p. 197 Stoyanovsky, A.V., Quantum Langlands duality and conformal field theory, arXiv:math/0610974 Bakas, I., Sourdis, C., (2005) Fortschr. Phys, 53, p. 409. , arXiv:hep-th/0501127 I. Bakas and C. Sourdis, J. High Energy Phys. 0406, 049 (2004), arXiv:hepth/0403165; G. Giribet and C. Núñez, J. High Energy Phys. 0106, 010 (2001), arXiv:hepth/0105200; Zamolodchikov, A., Zamolodchikov, A., Nucl. Phys. B, 477. , 577 1996, arXiv:hepth/9506136 Teschner, J., (1999) Nucl. Phys. B, 546, p. 369. , arXiv:hep-th/9712258 Teschner, J., (2000) Nucl. Phys. B, 571, p. 555. , arXiv:hep-th/9906215 Al. Zamolodchikov, Perturbed conformal field theory on fluctuating sphere, Contribution to the Balkan Workshop BW2003, Mathematical, Theoretical and Phenomenological Challenges Beyond Standard Model, Vrnjancka Banja, Serbia, arXiv:hepth/0508044; Petersen, J.L., Rasmussen, J., Yu, M., Nucl. Phys. B, 502. , 649 1997, arXiv:hepth/9704052 Di Francesco, P., Kutasov, D., Nucl. Phys. B, 375. , 119 1992, arXiv:hepth/9109005 Dotsenko, V., Fateev, V., (1985) Nucl. Phys. B, 251, p. 691 Satoh, Y., (2002) Nucl. Phys. B, 629, p. 188. , arXiv:hep-th/0109059 Becker, K., Becker, M., (1994) Nucl. Phys. B, 418, p. 206. , arXiv:hep-th/9310046 F. Nitti and M. Porrati, J. High Energy Phys. 0401, 028 (2004), arXiv:hepth/0311069; Petersen, J., Rasmussen, J., Yu, M., Nucl. Phys. B, 457. , 343 1995, arXiv:hepth/9506180 V. A. Fateev and A. V. Litvinov, J. High Energy Phys. 0711, 002 (2007), arXiv:0709.3806 |
| ISSN: | 0217751X |