Vortex formation in a two-dimensional Bose gas

We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature against the formation of isolated vortices. We consider a patch of several healing lengths in size and compute its free energy using the Euclidean formalism. Since we deal with an open system, which is able to e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calzetta, E.
Otros Autores: Ho, K.-Y, Hu, B.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature against the formation of isolated vortices. We consider a patch of several healing lengths in size and compute its free energy using the Euclidean formalism. Since we deal with an open system, which is able to exchange particles and angular momentum with the rest of the condensate, we use the symmetry-breaking (as opposed to the particle number conserving) formalism, and include configurations with all values of angular momenta in the partition function. At finite temperature, there appear sphaleron configurations associated with isolated vortices. The contribution from these configurations to the free energy is computed in the dilute gas approximation. We show that the Euclidean action of linearized perturbations of a vortex is not positive definite. As a consequence the free energy of the 2D Bose gas acquires an imaginary part. This signals the instability of the gas. This instability may be identified with the Berezinskii-Kosterlitz-Thouless transition. © 2010 IOP Publishing Ltd.
Bibliografía:Mermin, N.D., Wagner, H., Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models (1966) Phys. Rev. Lett., 17, p. 1133
Hohenberg, P.C., Existence of long-range order in one and two dimensions (1967) Phys. Rev., 158, p. 383
Coleman, S., There are no Goldstone bosons in two dimensions (1973) Commun. Math. Phys., 31, p. 259
Berezinskii, V.L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group: I. Classical systems (1971) Sov. Phys.-JETP, 32, p. 493
Kosterlitz, J.M., Thouless, D.J., Ordering, metastability and phase transitions in two-dimensional systems (1973) J. Phys. C: Solid State Phys., 6, p. 1181
Al Khawaja, U., Andersen, J.O., Proukakis, N.P., Stoof, H.T.C., Low-dimensional Bose gases (2002) Phys. Rev. A, 66, p. 013615
How, P.-T., Leclair, A., Critical point of the two-dimensional Bose gas: An S-matrix approach (2010) Nucl. Phys., 824, p. 415
Gräter, M., Wetterich, C., Kosterlitz-Thouless phase transition in the two-dimensional linear σ model (1995) Phys. Rev. Lett., 75, p. 378
Gersdorff, G.V., Wetterich, C., Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition (2001) Physical Review B - Condensed Matter and Materials Physics, 64 (5), pp. 0545131-0545135. , 054513
Floerchinger, S., Wetterich, C., Superfluid Bose gas in two dimensions (2009) Phys. Rev. A, 79, p. 013601
Popov, V.N., Quantum vortices and phase transitions in Bose systems (1973) Sov. Phys.-JETP, 37, p. 341
Popov, V.N., (1987) Functional Integrals and Collective Excitations, , (Cambridge: Cambridge University Press) chapter 8
Chu, H.-C., Williams, G.A., Quenched Kosterlitz-Thouless superfluid transition (2000) Phys. Rev. Lett., 86, p. 2585
Arovas, D.P., Auerbach, A., Quantum tunneling of vortices in two-dimensional superfluids (2008) Phys. Rev. B, 78, p. 094508
Lindner, N.H., Auerbach, A., Arovas, D.P., Vortex quantum dynamics of two-dimensional lattice bosons (2008) Phys. Rev. Lett., 102, p. 070403
Joseph Wang, C.-C., Duine, R.A., MacDonald, A.H., Quantum vortex dynamics in two-dimensional neutral superfluids (2010) Phys. Rev. A, 81, p. 013609
Gross, E.P., Hydrodynamics of a superfluid condensate (1963) J. Math. Phys., 4, p. 195
Ginzburg, V.L., Pitaevskii, L.P., On the theory of superfluidity (1958) Sov. Phys.-JETP, 34, p. 858
Pu, H., Law, C.K., Eberly, J.H., Bigelow, N.P., Coherent disintegration and stability of vortices in trapped Bose condensates (1999) Physical Review A - Atomic, Molecular, and Optical Physics, 59 (2-3), pp. 1533-1537
Prokof'Ev, N., Ruebenacker, O., Svistunov, B., Critical point of a weakly interacting two-dimensional Bose gas (2001) Physical Review Letters, 87 (1-27), pp. 2704021-2704024. , 270402
Prokof'Ev, N., Svistunov, B., Two-dimensional weakly interacting Bose gas in the fluctuation region (2002) Phys. Rev. A, 66, p. 043608
Davis, M.J., Morgan, S.A., Burnett, K., Simulations of thermal Bose fields in the classical limit (2002) Phys. Rev. A, 66, p. 053618
Hutchinson, D.A.W., Blakie, P.B., Phase transitions in ultra-cold two-dimensional Bose gases (2006) Int. J. Mod. Phys., 20 (30-31), p. 5224
Simula, T.P., Blakie, P.B., Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates (2006) Phys. Rev. Lett., 96, p. 020404
Shumayer, D., Hutchinsin, D.A.W., Thermodynamically activated vortex-dipole formation in a two-dimensional Bose-Einstein condensate (2007) Phys. Rev. A, 75, p. 015601
Simula, T.P., Davis, M.J., Blakie, P.B., Superfluidity of an interacting trapped quasi-two-dimensional Bose gas (2008) Phys. Rev. A, 77, p. 023618
Holzmann, M., Chevallier, M., Krauth, W., Semiclassical theory of the quasi-two-dimensional trapped Bose gas (2008) Europhys. Lett., 82, p. 30001
Bisset, R.N., Baillie, D., Blakie, P.B., Analysis of the Holzmann-Chevallier-Krauth theory for the trapped quasi-two-dimensional Bose gas (2009) Phys. Rev. A, 79, p. 013602
Bisset, R.N., Davis, M.J., Simula, T.P., Blakie, P.B., Quasi-condensation and coherence in the quasi-two-dimensional trapped Bose gas (2009) Phys. Rev. A, 79, p. 033626
Bisset, R.N., Blakie, P.B., Quantitative test of the mean-field description of a trapped two-dimensional Bose gas (2009) Phys. Rev. A, 80, p. 045603
Bisset, R.N., Blakie, P.B., Transition region properties of a trapped quasi-two-dimensional degenerate Bose gas (2009) Phys. Rev. A, 80, p. 035602
Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., Dalibard, J., Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas (2007) Nature, 441, p. 1118
Krüger, P., Hadzibabic, Z., Dalibard, J., Critical point of an interacting two-dimensional atomic Bose gas (2007) Phys. Rev. Lett., 99, p. 040402
Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K., Phillips, W.D., Observation of a 2D Bose gas: From thermal to quasi-condensate to superfluid (2009) Phys. Rev. Lett., 102, p. 170401
Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , (Cambridge: Cambridge University Press) chapter 13.3
Rubakov, V., (2002) Classical Theory of Gauge Fields, , (Princeton, NJ: Princeton University Press)
Langer, J.S., Theory of nucleation rates (1968) Phys. Rev. Lett., 21, p. 973
Langer, J.S., Statistical theory of the decay of metastable states (1969) Ann. Phys., 54, p. 258
Coleman, S., Fate of the false vacuum: Semiclassical theory (1977) Phys. Rev. D, 15, p. 2929
Callan, C.G., Coleman, S., Fate of the false vacuum: II. First quantum corrections (1977) Phys. Rev. D, 16, p. 1762
Coleman, S., (1985) Aspects of Symmetry, , (Cambridge: Cambridge University Press) chapter 7
Affleck, I.K., De Luccia, F., Induced vacuum decay (1979) Phys. Rev. D, 20, p. 3168
Affleck, I., Quantum-statistical metastability (1981) Phys. Rev. Lett., 46, p. 388
Haldane, F.D.M., Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids (1981) Phys. Rev. Lett., 47, p. 1840
Calzetta, E., Hu, B.L., Rey, A.M., Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice (2006) Phys. Rev. A, 73, p. 023610
Hadzibabic, Z., Dalibard, J., (2009) Two-dimensional Bose Fluids: An Atomic Physics Perspective
Lifshitz, L.M., Pitaevskii, L.P., (1990) Statistical Physics, Part 2, 9. , (Course of Theoretical Physics) (Oxford: Pergamon) chapter 30
Barnett, R., Chen, E., Refael, G., Vortex synchronization in Bose-Einstein condensates: A time-dependent Gross-Pitaevskii equation approach (2010) New J. Phys., 13, p. 043004
Altland, A., Simons, B., (2006) Condensed Matter Field Theory, , (Cambridge: Cambridge University Press) chapter 9
Negele, J.W., Orland, H., (1998) Quantum Many-Particle Systems
Feynman, R.P., (1972) Statistical Mechanics, , (Reading, MA: Addison-Wesley) chapter 3
Rajaraman, R., (1987) Solitons and Instantons, , (New York: Elsevier) chapter 10
Gelfand, I.M., Yaglom, A.M., Integration in functional spaces and its applications in quantum physics (1960) J. Math. Phys., 1, p. 48
Dunne, G.V., Functional determinants in quantum field theory (2008) J. Phys. A: Math. Theor., 41, p. 304006
Holzmann, M., Krauth, W., Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas (2008) Phys. Rev. Lett., 100, p. 190402
ISSN:09534075
DOI:10.1088/0953-4075/43/9/095004