Tide model comparison over the Southwestern Atlantic Shelf
Sea surface height (SSH) as measured by satellites has become a powerful tool for oceanographic and climate related studies. Whereas in the open ocean good accuracy has been achieved, more energetic dynamics and a number of calibration problems have limited applications over continental shelves and...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Sea surface height (SSH) as measured by satellites has become a powerful tool for oceanographic and climate related studies. Whereas in the open ocean good accuracy has been achieved, more energetic dynamics and a number of calibration problems have limited applications over continental shelves and near the coast. Tidal ranges in the Southwestern Atlantic (SWA) continental shelf are among the highest in the world ocean, reaching up to 12 m at specific locations. This fact highlights the relevance of the accuracy of the tidal correction that must be applied to the satellite data to be useful in the region. In this work, amplitudes and phases of tidal constituents are extracted from five global tide models and three regional models and compared to the corresponding harmonics estimated from coastal tide gauges (TGs) and satellite altimetry data. The Root Sum Square (RSS) of the misfit of the common set of the five tidal constituents solved by the models (M2, N2, S2, K1 and O1) is higher than 18 cm close to the coast for two of the regional models and higher than 24.5 cm for the rest of the models considered. Both values are too high to provide an accurate estimation of geostrophic non-tidal currents from satellite altimetry in the coastal region. On the other hand, the global model with the highest spatial resolution has a RSS lower than 4.5 cm over the continental shelf even when the non-linear M4 overtide is considered. Comparison with in-situ current measurements suggests that this model can be used to de-tide altimetry data to compute large-scale patterns of SSH and associated geostrophic velocities. It is suggested that a local tide model with very high resolution that assimilates in-situ and satellite data should meet the precision needed to estimate geostrophic velocities at a higher resolution both close to the coast and over the Patagonian shelf. © 2010 Elsevier Ltd. |
|---|---|
| Bibliografía: | Acha, E.M., Mianzan, H.W., Guerrero, R.A., Favero, M., Bava, J., Marine fronts at the continental shelves of austral South America-physical and ecological processes (2004) Journal of Marine Systems, 44, pp. 83-105 Andersen, O.B., Woodworth, P.L., Flather, R.A., Intercomparison of recent ocean tide models (1995) Journal of Geophysical Research, 100 (12) Backhaus, J.O., A semi-implicit scheme for the shallow water equations for application to shelf sea modelling (1983) Continental Shelf Research, 2 (4), pp. 243-254 Backhaus, J.O., A three dimensional model for simulation of shelf sea dynamics (1985) Deutsche Hydrographische Zeitschirft, 38 (4), pp. 164-187 Balestrini, C., Rivas, A.L., Piola, A.R., Bianchi y, A.A., Guerrero, R.A., Corrientes en la plataforma continental Argentina (43°S), Departamento Oceanografía (1996) Servicio de Hidrografía Naval Informe Técnico N°94, p. 35 Benveniste, J., Vignudelli, S., (2009) Challenges in Coastal Satellite Radar Altimetry, Eos Transactions, 90. , AGU, 225 Bianchi, A.A., Bianucci, L., Piola, A.R., Pino, D.R., Schloss, I., Poisson, A., Balestrini, C.F., Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf (2005) Journal of Geophysical Research C: Oceans, 110 (7), pp. 1-10 Blumberg, A.F., Mellor, G.L., A description of a threedimensional coastal ocean circulation model (1987) Three-Dimensional Coastal Ocean Models, Coastal Estuarine Science Series, 2, pp. 1-16. , AGU, Washington, DC Bouffard, J., Vignudelli, S., Cipollini, P., Menard, Y., (2008) Geophysical Research Letters, p. 35 Burrage, D.M., Steinberg, C.R., Mason, L.B., Bode, L., Tidal corrections for TOPEX altimetry in the Coral Sea and Great Barrier Reef Lagoon: comparisons with long-term tide gauge records (2003) Journal of Geophysical Research, 108 (7) Cancet, M., Birol, F., Roblou, L., Langlais, C., Guihou, K., Bouffard, J., Dussurget, R., Lyard, F., CTOH regional altimetry products: examples of applications (2009) Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society (Annex), Venice, Italy, p. 306. , ESA Publication WPP, J. Hall, D.E. Harrison, D. Stammer (Eds.) Cartwright, D.E., Ray, R.D., Oceanic tides from Geosat altimetry (1990) Journal of Geophysical Research, 95, pp. 3069-3090 Castro, B.M., Miranda, L.B., (1998) Physical oceanography of the western Atlantic continental shelf located between 4N and 34S, in The Sea, 11, pp. 209-251. , John Wiley, Hoboken, N. J Chelton, D., Schlax, M.G., The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets (2003) Journal of Atmospheric and Oceanic Technology, 20, pp. 1276-1302 Cherniawsky, J.Y., Foreman, M.G.G., Crawford, W.R., Beckley, B.D., Altimeter observations of sea-level variability off the west coast of North America (2004) International Journal of Remote Sensing, 25 (7), pp. 1303-1306 D'Onofrio, E.E., Fiore, M.M.E., Romero, S.I., Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires (1999) Continental Shelf Research, 19 (13), pp. 1681-1693 Desai, S.D., Wahr, J.M., (1994), 75 (44 SUPPL. F57). , Another ocean tide model derived from TOPEX/POSEIDON satellite altimetry. Eos Transactions AGU, Fall Meet; Ducet, N., Traon, P.Y.L., Reverdin, G., Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 (2000) Journal of Geophysical Research, 105 (8), pp. 19477-19498 Eanes, R.J., Bettadpur, S.V., (1995), The CSR3.0 global ocean tide model, Report, Univ. of Tex. at Austin, Cent. for Space Res; Egbert, G.D., Erofeeva, S.Y., Efficient inverse modeling of barotropic ocean tides (2002) Journal of Atmospheric and Oceanic Technology, 19 (2), pp. 183-204 Etala, P., Dynamic issues in the SE South America storm surge modeling (2009) Natural Hazards, 51 (1), pp. 79-95 Etala, M.P., (2000), Nested models for the calculation of the storm surge in the Bahía Blanca estuary (in Spanish). PhD thesis. University of Buenos Aires, Buenos Aires; Fiore, M.M.E., D'Onofrio, E.E., Pousa, J.L., Schnack, E.J., Bértola, G.R., Storm surges and coastal impacts at Mar del Plata, Argentina (2009) Continental Shelf Research, 29 (14), pp. 1643-1649 Foreman, M.G.G., Crawford, W.R., Cherniawsky, J.Y., Gower, J.F.R., Cuypers, L., Ballantyne, V.A., Tidal correction of TOPEX/POSEIDON altimetry for seasonal sea surface elevation and current determination off the Pacific coast of Canada (1998) Journal of Geophysical Research, 103 (12), pp. 979-927. , 998 Fu, L.L., Pattern and velocity of propagation of the global ocean eddy variability (2009) Journal of Geophysical Research, 114, pp. 1-14. , 11017 Fu, L.-L., Alsdorf, D., Rodriguez, E., Morrow, R., Mognard, N., Lambin, J., Vaze, P., Lafon, T., The SWOT (surface water and ocean topography) mission (2010) Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, 2, p. 306. , ESA Publication WPP, Venice, Italy Genco, M.L., Lyard, F., Le Provost, C., The oceanic tides in the South Atlantic Ocean (1994) Annals of Geophysics, 12, pp. 868-886 Glorioso, P.D., Patagonian shelf 3D tide and surge model (2000) Journal of Marine Systems, 24 (1-2), pp. 141-151 Glorioso, P.D., Flather, R.A., The Patagonian Shelf tides (1997) Progress in Oceanography, 40 (1-4), pp. 263-283 Khanta, L.H., Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides: 1. Model description and results (1995) Journal of Geophysical Research, 100, pp. 4653-4672 Le Provost, C., Genco, M.L., Lyard, F., Vincent, P., Canceil, P., Spectroscopy of the world ocean tides from a finite element hydrodynamic model (1994) Journal of Geophysical Research, 99, pp. 24777-24797 Le Provost, C., Lyard, F., Molines, J.M., Genco, M.L., Rabilloud, F., A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set (1998) Journal of Geophysical Research, 103, pp. 5513-5529 Le Traon, P.Y., Dibarboure, G., Velocity mapping capabilities of present and future altimeter missions: the role of high frequency signals (2002) Journal of Atmospheric and Oceanic Technology, 19, pp. 2077-2088 Leeuwenburgh, O., Stammer, D., Uncertainties in altimetry-based velocity estimates (2002) Journal of Geophysical Research (Oceans), 107 (10), p. 3175 Lyard, F., Lefevre, F., Letellier, T., Francis, O., Modelling the global ocean tides: modern insights from FES2004 (2006) Ocean Dynamics, 56 (5-6), pp. 394-415 Matsumoto, K., Takanezawa, T., Ooe, M., Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamic model: a global model and a regional model around Japan (2000) Journal of Oceanography, 56, pp. 567-581 Palma, E.D., Matano, R.P., Piola, A.R., A numerical study of the Southwestern Atlantic Shelf circulation: barotropic response to tidal and wind forcing (2004) Journal of Geophysical Research C: Oceans, 109, p. 8 Palma, E.D., Matano, R.P., Piola, A.R., A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing (2008) Journal of Geophysical Research C: Oceans, 113, p. 11 Panella, S., Michelato, A., Perdicaro, R., Magazzù, G., Decembrini, S., Scarazzato, P., A preliminary contribution to understanding the hydrological characteristics of the Strait of Magellan: Austral spring 1989 (1991) Bollettino di Oceanologia Teorica ed Applicata, 9, pp. 107-126 Parke, M.E., (1987) Applicability of Sattelite Altimetry Data to Tidal Models, , ASCE, Williamsburg, VA, USA Parke, M.E., Stewart, R.H., Farless, D.L., Cartwright, D.E., On the choice of orbits for an altimetric satellite to study ocean circulation and tides (1987) Journal of Geophysical Research, 92 (11), pp. 693-11. , 707 Pascual, A., Faugere, Y., Larnicol, G., Le Traon, P.-Y., Improved description of the ocean mesoscale variability by combining four satellite altimeters (2006) Geophysical Research Letters, 33, p. 02611 Pascual, A., Pujol, M.-I., Larnicol, G., Le Traon, P.-Y., Rio, M.-H., Mesoscale mapping capabilities of multisatellite altimeter missions: first results with real data in the Mediterranean Sea (2007) Journal of Marine Systems, 65, pp. 190-211 Piola, A.R., Romero, S.I., Zajaczkovski, U., Space-time variability of the Plata plume inferred from ocean color (2008) Continental Shelf Research, 28 (13), pp. 1556-1567 Ray, R.D., (1999), p. 58. , A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, Rep. NASA/M-1999-209478Rep., Goddard Space Flight Center, Greenbelt, Md.; Ray, R.D., (2008), http://www.coastalt.eu/pisaworkshop08/pres/03-ray_coastal.pdf, Tide corrections for shallow-water altimetry. A quick overview. Coastal Altimetry Workshop, Pisa, Italy, November 2008, 〈 〉; Ray, R.D., Luthcke, S.B., Boy, J.-P., Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data (2009) Journal of Geophysical Research, 114, pp. C09017 Rivas, A.L., Current-meter observations in the Argentine Continental Shelf (1997) Continental Shelf Research, 17, pp. 391-406 Romero, S.I., Piola, A.R., Charo, M., Eiras Garcia, C.A., Chlorophyll-a variability off Patagonia based on SeaWiFS data (2006) Journal of Geophysical Research C: Oceans, 111, p. 5 Saraceno, M., Strub, P.T., Kosro, P.M., Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges (2008) Journal of Geophysical Research C: Oceans, 113, p. 11 Saraceno, M., D'Onofrio, E.E., Fiore, M.E., Grismeyer, W.H., (2008), On the utilization of satellite sea surface height over the Argentinean Continental Shelf. Paper presented at Second Coastal Altimetry Workshop, Pisa, Italy; Savcenko, R., Bosch, W., (2008), (81), p. 37. , EOT08a-Empirical ocean tide model from multi-mission satellite altimetry. DGFI Report; Schrama, E.J.O., Ray, R.D., A preliminary tidal analysis of TOPEX/POSEIDON altimetry (1994) Journal of Geophysical Research, 99 (12) Schwiderski, E.W., (1978) Global Ocean Tides, Part I: a Detailed Hydrodynamical Interpolation Model, NSWC/DL TR-3866, p. 26. , Naval Surface Weapons Center, Silver Spring, Maryland Schwiderski, E.W., On charting global ocean tides (1980) Reviews of Geophysics and Space Physics, 18 (1), pp. 243-268 (2008), p. 643. , SHN. Tablas de Marea, Buenos Aires, Argentina: Servicio Hidrografia Naval, Ministerio de Defensa Publicación H 610; Shum, C.K., Accuracy assessment of recent ocean tide models (1997) Journal of Geophysical Research, 102, pp. 25173-25194 Simionato, C.G., Dragani, W., Nunñez, M., Engel, M., A set of 3-D nested models for tidal propagation from the Argentinean continental shelf to the Rióo de la Plata estuary-Part I. M2 (2004) Journal of Coastal Research, 20 (3), pp. 893-912 Smith, W.H.F., Sandwell, D.T., Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings Science (1997) Science, 277, pp. 1956-1962 Strub, P.T., Chereskin, T.K., Niiler, P.P., James, C., Levine, M.D., Altimeter-derived variability of surface velocities in the California Current System. 1. Evaluation of TOPEX altimeter velocity resolution (1997) Journal of Geophysical Research, 102, pp. 12727-12748 Volkov, D.L., Larnicol, G., Dorandeu, J., Improving the quality of satellite altimetry data over continental shelves (2007) Journal of Geophysical Research, 112. , 06020 Zavialov, P., Moller, O., Campos, E., First direct measurements of currents on the continental shelf of southern Brazil (2002) Cont. Shelf Res., 22, pp. 1975-1986 |
| ISSN: | 02784343 |
| DOI: | 10.1016/j.csr.2010.08.014 |