Cooling balloons with liquid nitrogen

We present an undergraduate level experiment in which the radius of a rubber balloon is measured as it is cooled with liquid nitrogen. For balloons filled with simple gases that condense at liquid nitrogen temperatures, we found that the volume decreases linearly with time. We compared our measureme...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Moreno, A.J
Otros Autores: Ferrari, Hernán Javier, Bekeris, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We present an undergraduate level experiment in which the radius of a rubber balloon is measured as it is cooled with liquid nitrogen. For balloons filled with simple gases that condense at liquid nitrogen temperatures, we found that the volume decreases linearly with time. We compared our measurements with a simplified model based on elementary kinetic theory and thermodynamics that explains this behavior. Students are encouraged to test the validity of the model by repeating the experiment using gas mixtures and gases that do not condense at liquid nitrogen temperatures. © 2010 American Association of Physics Teachers.
Bibliografía:Hunt, R.G., Salinger, G.L., Qualitative demonstrations and experiments using liquid nitrogen (1969) Phys. Teach., 7 (5), pp. 289-290. , PHTEAH, 0031-921X, 10.1119/1.2351369
Hendricks, J., Lee, D., Rugheimer, M., Liquid nitrogen demonstrations (1971) Am. J. Phys., 39 (7), pp. 844-845. , AJPIAS, 0002-9505, 10.1119/1.1986301
Dickinson, J.T., Liquid nitrogen in a balloon (1977) Phys. Teach., 15 (6), pp. 361-362. , PHTEAH, 0031-921X, 10.1119/1.2339674
Simmonds, R., Browning, K., Rinker, A., Gastouniotis, T., Ion, D., Demonstrating paramagnetism using liquid nitrogen (1994) Phys. Teach., 32 (6), pp. 374-375. , PHTEAH, 0031-921X, 10.1119/1.2344043
Denardo, B., Masada, R., Rubber hysteresis experiment (1990) Phys. Teach., 28 (7), pp. 489-491. , PHTEAH, 0031-921X, 10.1119/1.2343121
Merritt, D.R., Weinhaus, F., The pressure curve for a rubber balloon (1978) Am. J. Phys., 46 (10), pp. 976-977. , AJPIAS, 0002-9505, 10.1119/1.11486
Verron, E., Marckmann, G., Numerical analysis of rubber balloons (2003) Thin-Walled Struct., 41 (8), pp. 731-746. , TWASDE, 0263-8231, 10.1016/S0263-8231(03)00023-5
Levin, Y., da Silveira, F.L., Two rubber balloons: Phase diagram of air transfer (2004) Phys. Rev. E, 69, p. 051108. , PLEEE8, 1063-651X, 10.1103/PhysRevE.69.051108, and , -1-4
www.mathworks.com/products/image/demos.html?file=/products/demos/shipping/images/ipexradius.html, See 〈〉; Tsuruta, T., Nagayama, G., A microscopic formulation of condensation coefficient and interface transport phenomena (2005) Energy, 30, pp. 795-805. , ENEYDS, 0360-5442, 10.1016/j.energy.2004.04.011
Sears, F.W., Salinger, G.L., (1986) Thermodynamics, Kinetic Theory and Statistical Thermodynamics, , and 3rd ed. (Addison-Wesley, Reading, MA, )
Bond, M., Struchtrup, H., Mean evaporation and condensation coefficients based on energy dependent condensation probability (2004) Phys. Rev. E, 70, p. 061605. , PLEEE8, 1063-651X, 10.1103/PhysRevE.70.061605, and , -1-21
Matsumoto, M., Molecular dynamics of fluid phase change (1998) Fluid Phase Equilib., 144, pp. 307-314. , FPEQDT, 0378-3812, 10.1016/S0378-3812(97)00274-4
Wiberg, E., Wiberg, N., Holleman, A., (2001) Inorganic Chemistry, p. 14. , and 101st ed. (Academic, San Diego, ), p
ISSN:00029505
DOI:10.1119/1.3473787