Structures in magnetohydrodynamic turbulence: Detection and scaling
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field;...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 15363 points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic- field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities. © 2010 The American Physical Society. |
|---|---|
| Bibliografía: | Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res., 87, p. 6011. , 10.1029/JA087iA08p06011; Matthaeus, W., Goldstein, M., Roberts, D., (1990) J. Geophys. Res., 95, p. 20673. , 10.1029/JA095iA12p20673; Burlaga, L.F., (1991) J. Geophys. Res., 96, p. 5847. , 10.1029/91JA00087 Zhou, Y., Matthaeus, W.H., Dmitruk, P., (2004) Rev. Mod. Phys., 76, p. 1015. , 10.1103/RevModPhys.76.1015; Bruno, R., Carbone, V., (2005) Living Reviews in Solar Physics, 2, p. 4 Cattell, C., (2005) J. Geophys. Res., 110, p. 01211. , 10.1029/2004JA010519; Retinò, A., (2007) Nat. Phys., 3, p. 235. , 10.1038/nphys574 Weygand, J.M., (2005) J. Geophys. Res., 110, p. 01205. , 10.1029/2004JA010581; Riveros, K.A., (2008) Geofis. Int., 47, p. 265 Sundkvist, D., (2005) Nature (London), 436, p. 825. , 10.1038/nature03931; Alexandrova, O., (2006) J. Geophys. Res., 111, p. 12208. , 10.1029/2006JA011934; Nykyri, K., (2006) Ann. Geophys., 24, p. 2619. , 10.5194/angeo-24-2619-2006; Phan, T.D., Gosling, J.T., Davis, M.S., Skoug, R.M., Oieroset, M., Lin, R.P., Lepping, R.P., Balogh, A., A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind (2006) Nature, 439 (7073), pp. 175-178. , DOI 10.1038/nature04393, PII NATURE04393 Saur, J., (2002) Astron. Astrophys., 386, p. 699. , 10.1051/0004-6361:20020305 Falgarone, E., Pety, J., Hily-Blant, P., Astrophys. J. Dmitruk, P., Gomez, D.O., Turbulent Coronal Heating and the Distribution of Nanoflares (1997) Astrophysical Journal, 484 (2), pp. L83-L86. , DOI 10.1086/310760 Charbonneau, P., McIntosh, S.W., Liu, H.-L., Bogdan, T.J., Avalanche models for solar flares (Invited review) (2001) Solar Physics, 203 (2), pp. 321-353. , DOI 10.1023/A:1013301521745 Uritsky, V.M., Klimas, A.J., Vassiliadis, D., Critical finite-size scaling of energy and lifetime probability distributions of auroral emissions (2006) Geophysical Research Letters, 33 (8), pp. L08102. , DOI 10.1029/2005GL025330 Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R., Signature of an avalanche in solar flares as measured by photospheric magnetic fields (2003) Astrophysical Journal, 597 (2), pp. 1135-1144. , DOI 10.1086/378492 Klimas, A.J., (2000) J. Geophys. Res., [Space Phys.], 105, p. 18765. , 10.1029/1999JA000319; Klimas, A.J., (2004) J. Geophys. Res., [Space Phys.], 109, p. 02218. , 10.1029/2003JA010036; Klimas, A.J., (2005) Geophys. Res. Lett., 32, p. 14108. , 10.1029/2005GL022916; A. Klimas, V. Uritsky, and M. Paczuski, e-print arXiv:astro-ph/0701486; Voros, Z., (2006) Space Sci. Rev., 122, p. 301. , 10.1007/s11214-006-6987-7 Angelopoulos, V., (1999) Phys. Plasmas, 6, p. 4161. , 10.1063/1.873681 Lui, A.T.Y., Current controversies in magnetospheric physics (2001) Reviews of Geophysics, 39 (4), pp. 535-563. , DOI 10.1029/2000RG000090 Uritsky, V.M., (2002) J. Geophys. Res., 107, p. 1426. , 10.1029/2001JA000281; Uritsky, V.M., Klimas, A.J., Vassiliadis, D., (2003) Geophys. Res. Lett., 30, p. 1813. , 10.1029/2002GL016556; Uritsky, V.M., Klimas, A.J., Valdivia, J.A., Vassiliadis, D., Baker, D.N., Stable critical behavior and fast field annihilation in a magnetic field reversal model (2001) Journal of Atmospheric and Solar-Terrestrial Physics, 63 (13), pp. 1425-1433. , DOI 10.1016/S1364-6826(00)00244-3, PII S1364682600002443 Stepanova, M.V., (2005) J. Atmos. Sol.-Terr. Phys., 67, p. 1876. , 10.1016/j.jastp.2004.11.016; Stepanova, M.V., (2006) Adv. Space Res., 37, p. 559. , 10.1016/j.asr.2005.04.112 Uritsky, V.M., Paczuski, M., Davila, J.M., Jones, S.I., Coexistence of self-organized criticality and intermittent turbulence in the solar corona (2007) Physical Review Letters, 99 (2), p. 025001. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.025001&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.025001 Gekelman, W., Stenzel, R., (1984) J. Geophys. Res., [Space Phys.], 89, p. 2715. , 10.1029/JA089iA05p02715; Yamada, M., (1997) Phys. Plasmas, 4, p. 1936. , 10.1063/1.872336; Zweibel, E.G., Yamada, M., (2009) Annu. Rev. Astron. Astrophys., 47, p. 291. , 10.1146/annurev-astro-082708-101726 Sorriso-Valvo, L., (2000) Europhys. Lett., 51, p. 520. , 10.1209/epl/i2000-00369-6 Mininni, P.D., Pouquet, A., (2009) Phys. Rev. e, 80, p. 025401. , 10.1103/PhysRevE.80.025401 Sorriso-Valvo, L., (2004) Planet. Space Sci., 52, p. 937. , 10.1016/j.pss.2004.02.006 Grappin, R., (1982) Astron. Astrophys., 105, p. 6 Meneguzzi, M., Politano, H., Pouquet, A., Zolver, M., A sparse-mode spectral method for the simulation of turbulent flows (1996) Journal of Computational Physics, 123 (1), pp. 32-44. , DOI 10.1006/jcph.1996.0003 Matthaeus, W.H., Pouquet, A., Mininni, P.D., Dmitruk, P., Breech, B., Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence (2008) Physical Review Letters, 100 (8), p. 085003. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.085003&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.085003 Hasegawa, H., Fujimoto, M., Phan, T.-D., Reme, H., Balogh, A., Dunlop, M.W., Hashimoto, C., TanDokoro, R., Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices (2004) Nature, 430 (7001), pp. 755-758. , DOI 10.1038/nature02799 Mininni, P.D., Pouquet, A., (2007) Phys. Rev. Lett., 99, p. 254502. , 10.1103/PhysRevLett.99.254502 Pouquet, A., (2010) Geophys. Astrophys. Fluid Dyn., 104, p. 115. , 10.1080/03091920903304080 McWilliams, J.C., (1990) J. Fluid Mech., 219, p. 361. , 10.1017/S0022112090002981 Montgomery, D., (1992) Phys. Fluids A, 4, p. 3. , 10.1063/1.858525 Robert, R., Sommeria, J., (1991) J. Fluid Mech., 229, p. 291. , 10.1017/S0022112091003038 Bouchet, F., Simonnet, E., (2009) Phys. Rev. Lett., 102, p. 094504. , 10.1103/PhysRevLett.102.094504; Chavanis, P.H., (2009) Eur. Phys. J. B, 70, p. 73. , 10.1140/epjb/e2009-00196-1 Lundgren, T.S., (1982) Phys. Fluids, 25, p. 2193. , 10.1063/1.863957; Gilbert, A., (1993) Phys. Fluids A, 5, p. 2831. , 10.1063/1.858746 Jiang, M., MacHira Ju, R., Thompson, D., (2005) Visualization Handbook, , in edited by C. Hansen and C. Johnson (Academic Press, London Wu, J.Z., Ma, H.Y., Zhou, M.D., (2006) Vorticity and Vortex Dynamics, , 1st ed. (Springer, Heidelberg, 10.1007/978-3-540-29028-5; Kaneda, Y., (2003) Phys. Fluids, 15, p. 21. , 10.1063/1.1539855; Gruchalla, K., (2009) Visualization-Driven Structural and Statistical Analysis of Turbulent Flows, pp. 321-332. , in edited by N. Adams et al. (Springer-Verlag, Berlin, Heidelberg Politano, H., Pouquet, A., Sulem, P.L., (1995) Phys. Plasmas, 2, p. 2931. , 10.1063/1.871473 Müller, W.C., Biskamp, D., (2000) Phys. Rev. Lett., 84, p. 475. , 10.1103/PhysRevLett.84.475 Linton, M.G., Dahlburg, R.B., Antiochos, K., (2001) Astrophys. J., 553, p. 905. , 10.1086/320974; Alexandrova, O., (2004) J. Geophys. Res., 109, p. 05207. , 10.1029/2003JA010056; Brandenburg, A., Subramanian, K., (2005) Phys. Rep., 417, p. 1. , 10.1016/j.physrep.2005.06.005; Clyne, J., (2007) New J. Phys., 9, p. 301. , 10.1088/1367-2630/9/8/301; Yousef, T.A., Rincon, F., Schekochihin, A.A., (2007) J. Fluid Mech., 575, p. 111. , 10.1017/S0022112006004186; Mininni, P.D., (2008) New J. Phys., 10, p. 125007. , 10.1088/1367-2630/10/12/125007 Servidio, S., Matthaeus, W.H., Shay, M.A., Cassak, P.A., Dmitruk, P., (2009) Phys. Rev. Lett., 102, p. 115003. , 10.1103/PhysRevLett.102.115003 Mininni, P.D., Pouquet, A.G., Montgomery, D.C., Small-scale structures in three-dimensional magnetohydrodynamic turbulence (2006) Physical Review Letters, 97 (24), p. 244503. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.244503&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.244503 Mininni, P.D., Alexakis, A., Pouquet, A., Large-scale flow effects, energy transfer, and self-similarity on turbulence (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74 (1), p. 016303. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.74.016303&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.74.016303 Childress, S., Gilbert, A.D., (1995) Stretch, Twist, Fold: The Fast Dynamo, , Springer, Berlin Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Rosenberg, D., (2010) Phys. Rev. e, 81, p. 016318. , 10.1103/PhysRevE.81.016318 Muller, W.-C., Grappin, R., Spectral energy Dynamics in magnetohydrodynamic turbulence (2005) Physical Review Letters, 95 (11), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.114502, 114502 Mason, J., Cattaneo, F., Boldyrev, S., Numerical measurements of the spectrum in magnetohydrodynamic turbulence (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (3), p. 036403. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.036403&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.036403 Dmitruk, P., Gómez, D.O., Matthaeus, W.H., (2003) Phys. Plasmas, 10, p. 3584. , 10.1063/1.1602698; Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B., (2007) Astrophys. J., 657, p. 47. , 10.1086/512975 Biskamp, D., Welter, H., (1989) Phys. Fluids B, 1, p. 1964. , 10.1063/1.859060 Politano, H., Pouquet, A., Sulem, P.L., (1989) Phys. Fluids B, 1, p. 2330. , 10.1063/1.859051 Lapenta, G., (2008) Phys. Rev. Lett., 100, p. 235001. , 10.1103/PhysRevLett.100.235001 Pouquet, A., (1993) Magnetohydrodynamic Turbulence, les Houches Summer School on Astrophysical Fluid Dynamics, Session XLVII, pp. 139-227. , in edited by J. P. Zahn and J. Zinn-Justin (Elsevier, New York Boldyrev, S., Perez, J.C., (2009) Phys. Rev. Lett., 103, p. 225001. , 10.1103/PhysRevLett.103.225001 Servidio, S., Matthaeus, W.H., Dmitruk, P., Depression of nonlinearity in decaying isotropic MHD turbulence (2008) Physical Review Letters, 100 (9), p. 095005. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.095005&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.095005 Sreenivasan, K.R., (2004) Physica A, 340, p. 574. , 10.1016/j.physa.2004.05.008 Paczuski, M., Boettcher, S., Baiesi, M., Interoccurrence times in the Bak-Tang-Wiesenfeld sandpile Model: A comparison with the observed statistics of solar flares (2005) Physical Review Letters, 95 (18), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.181102, 181102 Chang, T., (1999) Phys. Plasmas, 6, p. 4137. , 10.1063/1.873678 Chapman, S., Watkins, N., Avalanching and self-organised criticality, a paradigm for geomagnetic activity? (2001) Space Science Reviews, 95 (1-2), pp. 293-307. , DOI 10.1023/A:1005236717469 Chang, T., (2003) Space Sci. Rev., 107, p. 425. , 10.1023/A:1025502023494 Bak, P., Paczuski, M., Luminous matter may arise from a turbulent plasma state of the early universe (2005) Physica A: Statistical Mechanics and its Applications, 348, pp. 277-280. , DOI 10.1016/j.physa.2004.08.034, PII S0378437104011513 Chen, K., Jayaprakash, C., (2004) Physica A, 340, p. 566. , 10.1016/j.physa.2004.05.007 Galtier, S., Pouquet, A., Solar Flare Statistics with a One-Dimensional MHD Model (1998) Solar Physics, 179 (1), pp. 141-165. , DOI 10.1023/A:1005056102064 Einaudi, G., (1996) Astrophys. J. Lett., 455, p. 113 Ben-Hur, A., Biham, O., (1996) Phys. Rev. e, 53, p. 1317. , 10.1103/PhysRevE.53.R1317 Note that the volume of the structures in our definition is an instantaneous value of the avalanche size S at a given time and is therefore a natural choice in frames of this calculation; Dhar, D., (1999) Physica A, 263, p. 4. , 10.1016/S0378-4371(98)00493-2; Dhar, D., Theoretical studies of self-organized criticality (2006) Physica A: Statistical Mechanics and its Applications, 369 (1), pp. 29-70. , DOI 10.1016/j.physa.2006.04.004, PII S0378437106004006 Bak, P., Tang, C., Wiesenfeld, K., (1987) Phys. Rev. Lett., 59, p. 381. , 10.1103/PhysRevLett.59.381 Manna, S.S., (1999) Curr. Sci., 77, p. 388 Bak, P., (1997) How Nature Works: The Science of Self-Organized Criticality, , Oxford University Press, Oxford Vespignani, A., Dickman, R., Munoz, M.A., Zapperi, S., (1998) Phys. Rev. Lett., 81, p. 5676. , 10.1103/PhysRevLett.81.5676 Hughes, D., Paczuski, M., (2002) Phys. Rev. Lett., 88, p. 054302. , 10.1103/PhysRevLett.88.054302 Dmitruk, P., Matthaeus, W.H., Low-frequency 1f fluctuations in hydrodynamic and magnetohydrodynamic turbulence (2007) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 76 (3), p. 036305. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.76.036305&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.76.036305 Alexakis, A., Mininni, P.D., Pouquet, A., (2005) Phys. Rev. e, 72, p. 046301. , 10.1103/PhysRevE.72.046301; Mininni, P., Alexakis, A., Pouquet, A., Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo (2005) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72 (4), pp. 1-8. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRE:72, DOI 10.1103/PhysRevE.72.046302, 046302 Lu, E.T., Hamilton, R.J., (1991) Astrophys. J., 380, p. 89. , 10.1086/186180 Kiyani, K., Chapman, S.C., Hnat, B., Nicol, R.M., Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence (2007) Physical Review Letters, 98 (21), p. 211101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.211101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.211101 Peters, O., Neelin, J.D., Critical phenomena in atmospheric precipitation (2006) Nature Physics, 2 (6), pp. 393-396. , DOI 10.1038/nphys314, PII N314 Gloaguen, C., (1985) Physica D, 17, p. 154. , 10.1016/0167-2789(85)90002-8 Carbone, V., Pouquet, A., (2009) School on Astrophysical Plasmas, pp. 71-128. , in edited by L. Vlahos and P. Cargill (Springer Verlag, New York Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., Vulpiani, A., (1999) Phys. Rev. Lett., 83, p. 4662. , 10.1103/PhysRevLett.83.4662 Uritsky, V.M., Davila, J.M., Jones, S.I., (2009) Phys. Rev. Lett., 103, p. 039502. , 10.1103/PhysRevLett.103.039502 Bernard, D., (2006) Nat. Phys., 2, p. 124. , 10.1038/nphys217; Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Inverse turbulent cascades and conformally invariant curves (2007) Physical Review Letters, 98 (2), p. 024501. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.024501&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.024501 Schneider, K., Farge, M., (2010) Annu. Rev. Fluid Mech., 42, p. 473. , 10.1146/annurev-fluid-121108-145637 Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M., Kaneda, Y., Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint (2007) Physics of Fluids, 19 (11), p. 115109. , DOI 10.1063/1.2771661 Chang, T., Wu, C.C., (2008) Phys. Rev. e, 77, p. 045401. , 10.1103/PhysRevE.77.045401; Tam, S.W.Y., Chang, T., Kintner, P.M., Klatt, E.M., (2010) Phys. Rev. e, 81, p. 036414. , 10.1103/PhysRevE.81.036414 Gruchalla, K., (2009) LNCS, 5772, pp. 321-332. , IDA 2009, in edited by N. Adams et al. (Springer-Verlag, Berlin, Heidelberg |
| ISSN: | 15393755 |
| DOI: | 10.1103/PhysRevE.82.056326 |