Structures in magnetohydrodynamic turbulence: Detection and scaling

We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field;...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Uritsky, V.M
Otros Autores: Pouquet, A., Rosenberg, D., Mininni, P.D, Donovan, E.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 15363 points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic- field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities. © 2010 The American Physical Society.
Bibliografía:Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res., 87, p. 6011. , 10.1029/JA087iA08p06011;
Matthaeus, W., Goldstein, M., Roberts, D., (1990) J. Geophys. Res., 95, p. 20673. , 10.1029/JA095iA12p20673;
Burlaga, L.F., (1991) J. Geophys. Res., 96, p. 5847. , 10.1029/91JA00087
Zhou, Y., Matthaeus, W.H., Dmitruk, P., (2004) Rev. Mod. Phys., 76, p. 1015. , 10.1103/RevModPhys.76.1015;
Bruno, R., Carbone, V., (2005) Living Reviews in Solar Physics, 2, p. 4
Cattell, C., (2005) J. Geophys. Res., 110, p. 01211. , 10.1029/2004JA010519;
Retinò, A., (2007) Nat. Phys., 3, p. 235. , 10.1038/nphys574
Weygand, J.M., (2005) J. Geophys. Res., 110, p. 01205. , 10.1029/2004JA010581;
Riveros, K.A., (2008) Geofis. Int., 47, p. 265
Sundkvist, D., (2005) Nature (London), 436, p. 825. , 10.1038/nature03931;
Alexandrova, O., (2006) J. Geophys. Res., 111, p. 12208. , 10.1029/2006JA011934;
Nykyri, K., (2006) Ann. Geophys., 24, p. 2619. , 10.5194/angeo-24-2619-2006;
Phan, T.D., Gosling, J.T., Davis, M.S., Skoug, R.M., Oieroset, M., Lin, R.P., Lepping, R.P., Balogh, A., A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind (2006) Nature, 439 (7073), pp. 175-178. , DOI 10.1038/nature04393, PII NATURE04393
Saur, J., (2002) Astron. Astrophys., 386, p. 699. , 10.1051/0004-6361:20020305
Falgarone, E., Pety, J., Hily-Blant, P., Astrophys. J.
Dmitruk, P., Gomez, D.O., Turbulent Coronal Heating and the Distribution of Nanoflares (1997) Astrophysical Journal, 484 (2), pp. L83-L86. , DOI 10.1086/310760
Charbonneau, P., McIntosh, S.W., Liu, H.-L., Bogdan, T.J., Avalanche models for solar flares (Invited review) (2001) Solar Physics, 203 (2), pp. 321-353. , DOI 10.1023/A:1013301521745
Uritsky, V.M., Klimas, A.J., Vassiliadis, D., Critical finite-size scaling of energy and lifetime probability distributions of auroral emissions (2006) Geophysical Research Letters, 33 (8), pp. L08102. , DOI 10.1029/2005GL025330
Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R., Signature of an avalanche in solar flares as measured by photospheric magnetic fields (2003) Astrophysical Journal, 597 (2), pp. 1135-1144. , DOI 10.1086/378492
Klimas, A.J., (2000) J. Geophys. Res., [Space Phys.], 105, p. 18765. , 10.1029/1999JA000319;
Klimas, A.J., (2004) J. Geophys. Res., [Space Phys.], 109, p. 02218. , 10.1029/2003JA010036;
Klimas, A.J., (2005) Geophys. Res. Lett., 32, p. 14108. , 10.1029/2005GL022916;
A. Klimas, V. Uritsky, and M. Paczuski, e-print arXiv:astro-ph/0701486; Voros, Z., (2006) Space Sci. Rev., 122, p. 301. , 10.1007/s11214-006-6987-7
Angelopoulos, V., (1999) Phys. Plasmas, 6, p. 4161. , 10.1063/1.873681
Lui, A.T.Y., Current controversies in magnetospheric physics (2001) Reviews of Geophysics, 39 (4), pp. 535-563. , DOI 10.1029/2000RG000090
Uritsky, V.M., (2002) J. Geophys. Res., 107, p. 1426. , 10.1029/2001JA000281;
Uritsky, V.M., Klimas, A.J., Vassiliadis, D., (2003) Geophys. Res. Lett., 30, p. 1813. , 10.1029/2002GL016556;
Uritsky, V.M., Klimas, A.J., Valdivia, J.A., Vassiliadis, D., Baker, D.N., Stable critical behavior and fast field annihilation in a magnetic field reversal model (2001) Journal of Atmospheric and Solar-Terrestrial Physics, 63 (13), pp. 1425-1433. , DOI 10.1016/S1364-6826(00)00244-3, PII S1364682600002443
Stepanova, M.V., (2005) J. Atmos. Sol.-Terr. Phys., 67, p. 1876. , 10.1016/j.jastp.2004.11.016;
Stepanova, M.V., (2006) Adv. Space Res., 37, p. 559. , 10.1016/j.asr.2005.04.112
Uritsky, V.M., Paczuski, M., Davila, J.M., Jones, S.I., Coexistence of self-organized criticality and intermittent turbulence in the solar corona (2007) Physical Review Letters, 99 (2), p. 025001. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.025001&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.025001
Gekelman, W., Stenzel, R., (1984) J. Geophys. Res., [Space Phys.], 89, p. 2715. , 10.1029/JA089iA05p02715;
Yamada, M., (1997) Phys. Plasmas, 4, p. 1936. , 10.1063/1.872336;
Zweibel, E.G., Yamada, M., (2009) Annu. Rev. Astron. Astrophys., 47, p. 291. , 10.1146/annurev-astro-082708-101726
Sorriso-Valvo, L., (2000) Europhys. Lett., 51, p. 520. , 10.1209/epl/i2000-00369-6
Mininni, P.D., Pouquet, A., (2009) Phys. Rev. e, 80, p. 025401. , 10.1103/PhysRevE.80.025401
Sorriso-Valvo, L., (2004) Planet. Space Sci., 52, p. 937. , 10.1016/j.pss.2004.02.006
Grappin, R., (1982) Astron. Astrophys., 105, p. 6
Meneguzzi, M., Politano, H., Pouquet, A., Zolver, M., A sparse-mode spectral method for the simulation of turbulent flows (1996) Journal of Computational Physics, 123 (1), pp. 32-44. , DOI 10.1006/jcph.1996.0003
Matthaeus, W.H., Pouquet, A., Mininni, P.D., Dmitruk, P., Breech, B., Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence (2008) Physical Review Letters, 100 (8), p. 085003. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.085003&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.085003
Hasegawa, H., Fujimoto, M., Phan, T.-D., Reme, H., Balogh, A., Dunlop, M.W., Hashimoto, C., TanDokoro, R., Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices (2004) Nature, 430 (7001), pp. 755-758. , DOI 10.1038/nature02799
Mininni, P.D., Pouquet, A., (2007) Phys. Rev. Lett., 99, p. 254502. , 10.1103/PhysRevLett.99.254502
Pouquet, A., (2010) Geophys. Astrophys. Fluid Dyn., 104, p. 115. , 10.1080/03091920903304080
McWilliams, J.C., (1990) J. Fluid Mech., 219, p. 361. , 10.1017/S0022112090002981
Montgomery, D., (1992) Phys. Fluids A, 4, p. 3. , 10.1063/1.858525
Robert, R., Sommeria, J., (1991) J. Fluid Mech., 229, p. 291. , 10.1017/S0022112091003038
Bouchet, F., Simonnet, E., (2009) Phys. Rev. Lett., 102, p. 094504. , 10.1103/PhysRevLett.102.094504;
Chavanis, P.H., (2009) Eur. Phys. J. B, 70, p. 73. , 10.1140/epjb/e2009-00196-1
Lundgren, T.S., (1982) Phys. Fluids, 25, p. 2193. , 10.1063/1.863957;
Gilbert, A., (1993) Phys. Fluids A, 5, p. 2831. , 10.1063/1.858746
Jiang, M., MacHira Ju, R., Thompson, D., (2005) Visualization Handbook, , in edited by C. Hansen and C. Johnson (Academic Press, London
Wu, J.Z., Ma, H.Y., Zhou, M.D., (2006) Vorticity and Vortex Dynamics, , 1st ed. (Springer, Heidelberg, 10.1007/978-3-540-29028-5;
Kaneda, Y., (2003) Phys. Fluids, 15, p. 21. , 10.1063/1.1539855;
Gruchalla, K., (2009) Visualization-Driven Structural and Statistical Analysis of Turbulent Flows, pp. 321-332. , in edited by N. Adams et al. (Springer-Verlag, Berlin, Heidelberg
Politano, H., Pouquet, A., Sulem, P.L., (1995) Phys. Plasmas, 2, p. 2931. , 10.1063/1.871473
Müller, W.C., Biskamp, D., (2000) Phys. Rev. Lett., 84, p. 475. , 10.1103/PhysRevLett.84.475
Linton, M.G., Dahlburg, R.B., Antiochos, K., (2001) Astrophys. J., 553, p. 905. , 10.1086/320974;
Alexandrova, O., (2004) J. Geophys. Res., 109, p. 05207. , 10.1029/2003JA010056;
Brandenburg, A., Subramanian, K., (2005) Phys. Rep., 417, p. 1. , 10.1016/j.physrep.2005.06.005;
Clyne, J., (2007) New J. Phys., 9, p. 301. , 10.1088/1367-2630/9/8/301;
Yousef, T.A., Rincon, F., Schekochihin, A.A., (2007) J. Fluid Mech., 575, p. 111. , 10.1017/S0022112006004186;
Mininni, P.D., (2008) New J. Phys., 10, p. 125007. , 10.1088/1367-2630/10/12/125007
Servidio, S., Matthaeus, W.H., Shay, M.A., Cassak, P.A., Dmitruk, P., (2009) Phys. Rev. Lett., 102, p. 115003. , 10.1103/PhysRevLett.102.115003
Mininni, P.D., Pouquet, A.G., Montgomery, D.C., Small-scale structures in three-dimensional magnetohydrodynamic turbulence (2006) Physical Review Letters, 97 (24), p. 244503. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.244503&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.244503
Mininni, P.D., Alexakis, A., Pouquet, A., Large-scale flow effects, energy transfer, and self-similarity on turbulence (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74 (1), p. 016303. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.74.016303&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.74.016303
Childress, S., Gilbert, A.D., (1995) Stretch, Twist, Fold: The Fast Dynamo, , Springer, Berlin
Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Rosenberg, D., (2010) Phys. Rev. e, 81, p. 016318. , 10.1103/PhysRevE.81.016318
Muller, W.-C., Grappin, R., Spectral energy Dynamics in magnetohydrodynamic turbulence (2005) Physical Review Letters, 95 (11), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.114502, 114502
Mason, J., Cattaneo, F., Boldyrev, S., Numerical measurements of the spectrum in magnetohydrodynamic turbulence (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (3), p. 036403. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.036403&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.036403
Dmitruk, P., Gómez, D.O., Matthaeus, W.H., (2003) Phys. Plasmas, 10, p. 3584. , 10.1063/1.1602698;
Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B., (2007) Astrophys. J., 657, p. 47. , 10.1086/512975
Biskamp, D., Welter, H., (1989) Phys. Fluids B, 1, p. 1964. , 10.1063/1.859060
Politano, H., Pouquet, A., Sulem, P.L., (1989) Phys. Fluids B, 1, p. 2330. , 10.1063/1.859051
Lapenta, G., (2008) Phys. Rev. Lett., 100, p. 235001. , 10.1103/PhysRevLett.100.235001
Pouquet, A., (1993) Magnetohydrodynamic Turbulence, les Houches Summer School on Astrophysical Fluid Dynamics, Session XLVII, pp. 139-227. , in edited by J. P. Zahn and J. Zinn-Justin (Elsevier, New York
Boldyrev, S., Perez, J.C., (2009) Phys. Rev. Lett., 103, p. 225001. , 10.1103/PhysRevLett.103.225001
Servidio, S., Matthaeus, W.H., Dmitruk, P., Depression of nonlinearity in decaying isotropic MHD turbulence (2008) Physical Review Letters, 100 (9), p. 095005. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.095005&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.095005
Sreenivasan, K.R., (2004) Physica A, 340, p. 574. , 10.1016/j.physa.2004.05.008
Paczuski, M., Boettcher, S., Baiesi, M., Interoccurrence times in the Bak-Tang-Wiesenfeld sandpile Model: A comparison with the observed statistics of solar flares (2005) Physical Review Letters, 95 (18), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.181102, 181102
Chang, T., (1999) Phys. Plasmas, 6, p. 4137. , 10.1063/1.873678
Chapman, S., Watkins, N., Avalanching and self-organised criticality, a paradigm for geomagnetic activity? (2001) Space Science Reviews, 95 (1-2), pp. 293-307. , DOI 10.1023/A:1005236717469
Chang, T., (2003) Space Sci. Rev., 107, p. 425. , 10.1023/A:1025502023494
Bak, P., Paczuski, M., Luminous matter may arise from a turbulent plasma state of the early universe (2005) Physica A: Statistical Mechanics and its Applications, 348, pp. 277-280. , DOI 10.1016/j.physa.2004.08.034, PII S0378437104011513
Chen, K., Jayaprakash, C., (2004) Physica A, 340, p. 566. , 10.1016/j.physa.2004.05.007
Galtier, S., Pouquet, A., Solar Flare Statistics with a One-Dimensional MHD Model (1998) Solar Physics, 179 (1), pp. 141-165. , DOI 10.1023/A:1005056102064
Einaudi, G., (1996) Astrophys. J. Lett., 455, p. 113
Ben-Hur, A., Biham, O., (1996) Phys. Rev. e, 53, p. 1317. , 10.1103/PhysRevE.53.R1317
Note that the volume of the structures in our definition is an instantaneous value of the avalanche size S at a given time and is therefore a natural choice in frames of this calculation; Dhar, D., (1999) Physica A, 263, p. 4. , 10.1016/S0378-4371(98)00493-2;
Dhar, D., Theoretical studies of self-organized criticality (2006) Physica A: Statistical Mechanics and its Applications, 369 (1), pp. 29-70. , DOI 10.1016/j.physa.2006.04.004, PII S0378437106004006
Bak, P., Tang, C., Wiesenfeld, K., (1987) Phys. Rev. Lett., 59, p. 381. , 10.1103/PhysRevLett.59.381
Manna, S.S., (1999) Curr. Sci., 77, p. 388
Bak, P., (1997) How Nature Works: The Science of Self-Organized Criticality, , Oxford University Press, Oxford
Vespignani, A., Dickman, R., Munoz, M.A., Zapperi, S., (1998) Phys. Rev. Lett., 81, p. 5676. , 10.1103/PhysRevLett.81.5676
Hughes, D., Paczuski, M., (2002) Phys. Rev. Lett., 88, p. 054302. , 10.1103/PhysRevLett.88.054302
Dmitruk, P., Matthaeus, W.H., Low-frequency 1f fluctuations in hydrodynamic and magnetohydrodynamic turbulence (2007) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 76 (3), p. 036305. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.76.036305&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.76.036305
Alexakis, A., Mininni, P.D., Pouquet, A., (2005) Phys. Rev. e, 72, p. 046301. , 10.1103/PhysRevE.72.046301;
Mininni, P., Alexakis, A., Pouquet, A., Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo (2005) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72 (4), pp. 1-8. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRE:72, DOI 10.1103/PhysRevE.72.046302, 046302
Lu, E.T., Hamilton, R.J., (1991) Astrophys. J., 380, p. 89. , 10.1086/186180
Kiyani, K., Chapman, S.C., Hnat, B., Nicol, R.M., Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence (2007) Physical Review Letters, 98 (21), p. 211101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.211101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.211101
Peters, O., Neelin, J.D., Critical phenomena in atmospheric precipitation (2006) Nature Physics, 2 (6), pp. 393-396. , DOI 10.1038/nphys314, PII N314
Gloaguen, C., (1985) Physica D, 17, p. 154. , 10.1016/0167-2789(85)90002-8
Carbone, V., Pouquet, A., (2009) School on Astrophysical Plasmas, pp. 71-128. , in edited by L. Vlahos and P. Cargill (Springer Verlag, New York
Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., Vulpiani, A., (1999) Phys. Rev. Lett., 83, p. 4662. , 10.1103/PhysRevLett.83.4662
Uritsky, V.M., Davila, J.M., Jones, S.I., (2009) Phys. Rev. Lett., 103, p. 039502. , 10.1103/PhysRevLett.103.039502
Bernard, D., (2006) Nat. Phys., 2, p. 124. , 10.1038/nphys217;
Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Inverse turbulent cascades and conformally invariant curves (2007) Physical Review Letters, 98 (2), p. 024501. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.024501&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.024501
Schneider, K., Farge, M., (2010) Annu. Rev. Fluid Mech., 42, p. 473. , 10.1146/annurev-fluid-121108-145637
Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M., Kaneda, Y., Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint (2007) Physics of Fluids, 19 (11), p. 115109. , DOI 10.1063/1.2771661
Chang, T., Wu, C.C., (2008) Phys. Rev. e, 77, p. 045401. , 10.1103/PhysRevE.77.045401;
Tam, S.W.Y., Chang, T., Kintner, P.M., Klatt, E.M., (2010) Phys. Rev. e, 81, p. 036414. , 10.1103/PhysRevE.81.036414
Gruchalla, K., (2009) LNCS, 5772, pp. 321-332. , IDA 2009, in edited by N. Adams et al. (Springer-Verlag, Berlin, Heidelberg
ISSN:15393755
DOI:10.1103/PhysRevE.82.056326