Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories

We look for the existence of asymptotically flat simple compactifications of the form D-p × Tp in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solution...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Giribet, G.
Otros Autores: Oliva, J., Troncoso, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We look for the existence of asymptotically flat simple compactifications of the form D-p × Tp in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories. © SISSA 2006.
Bibliografía:Lovelock, D., The Einstein tensor and its generalizations (1971) J. Math. Phys., 12 (3), p. 498
Lanczos, C., A remarkable property of the Riemann-Christofell tensor in four dimensions (1938) Ann. Math., 39
Mueller-Hoissen, F., Spontaneous compactification with quadratic and cubic curvature terms (1985) Phys. Lett., 163 (1-4), p. 106
Dehghani, M.H., Shamirzaie, M., Thermodynamics of asymptotic flat charged black holes in third order lovelock gravity (2005) Phys. Rev., 72 (12), p. 124015
Dehghani, M.H., Mann, R.B., Thermodynamics of Rotating Charged Black Branes in Third Order Lovelock Gravity and the Counterterm Method
Cnockaert, S., Henneaux, M., Lovelock terms and brst cohomology (2005) Class. Quantum Grav., 22 (13), p. 2797
Radu, E., Stelea, C., Tchrakian, Features of gravity-Yang-Mills hierarchies in d-dimensions (2006) Phys. Rev., 73 (8), p. 084015
Crisóstomo, J., Troncoso, R., Zanelli, J., Black hole scan (2000) Phys. Rev., 62 (8), p. 084013
Kastor, D., Mann, R., On Black Strings and Branes in Lovelock Gravity
Troncoso, R., Zanelli, J., Higher dimensional gravity and local AdS symmetry (2000) Class. Quantum Grav., 17 (21), p. 4451
Zegers, R., Birkhoff's theorem in lovelock gravity (2005) J. Math. Phys., 46, p. 0725
Deser, S., Franklin, J., Birkhoff for Lovelock redux (2005) Class. Quantum Grav., 22 (16), p. 103
Boulware, D.G., Deser, S., String generated gravity models (1985) Phys. Rev. Lett., 55 (24), p. 2656
Barcelo, C., Maartens, R., Sopuerta, C.F., Viniegra, F., Stacking a 4D geometry into an Einstein-Gauss-Bonnet bulk (2003) Phys. Rev., 67, p. 064023
Kobayashi, T., Tanaka, T., Five-dimensional black strings in Einstein-Gauss-Bonnet gravity (2005) Phys. Rev., 71, p. 084005
Sahabandu, C., Suranyi, P., Vaz, C., Wijewardhana, L.C.R., Thermodynamics of static black objects in d dimensional Einstein-Gauss-Bonnet gravity with D4 compact dimensions (2006) Phys. Rev., 73, p. 044009
Gregory, R., Laflamme, R., Black strings and p-branes are unstable (1993) Phys. Rev. Lett., 70 (19), p. 2837
Abdalla, E., Correa-Borbonet, L.A., Aspects of higher order gravity and holography (2002) Phys. Rev., 65 (12), p. 124011
Cvetic, M., Nojiri, S., Odintsov, S.D., Black hole thermodynamics and negative entropy in desitter and anti-desitter Einstein-Gauss-Bonnet gravity (2002) Nucl. Phys., 628 (1-2), p. 295
Clunan, T., Ross, S.F., Smith, D.J., On Gauss-Bonnet black hole entropy (2004) Class. Quantum Grav., 21 (14), p. 3447
Rizzo, T.G., TeV-scale Black Hole Lifetimes in Extra-dimensional Lovelock Gravity
Dotti, G., Gleiser, R.J., Gravitational instability of Einstein-Gauss-Bonnet black holes under tensor mode perturbations (2005) Class. Quantum Grav., 22 (1), p. 1
Neupane, I.P., Thermodynamic and gravitational instability on hyperbolic spaces (2004) Phys. Rev., 69 (8), p. 084011
Gleiser, R.J., Dotti, G., Linear stability of Einstein-Gauss-Bonnet static spacetimes, II. Vector and scalar perturbations (2005) Phys. Rev., 72 (12), p. 124002
Dotti, G., Gleiser, R.J., Linear stability of Einstein-Gauss-Bonnet static spacetimes, part. I. Tensor perturbations (2005) Phys. Rev., 72, p. 044018
Aros, R., Troncoso, R., Zanelli, J., Black holes with topologically nontrivial AdS asymptotics (2001) Phys. Rev., 63 (8), p. 084015
ISSN:10298479
DOI:10.1088/1126-6708/2006/05/007