A B.E.T.-like three sorption stage isotherm
The statistical B.E.T.-treatment of multimolecular sorption is extended to include three distinct sorption stages, viz. (I) the strongly sorbed monolayer, (II) the following h-1 layers, much less strongly sorbed, and (III) the remaining layers, up to infinity, of 'pure liquid' characterist...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
1989
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | The statistical B.E.T.-treatment of multimolecular sorption is extended to include three distinct sorption stages, viz. (I) the strongly sorbed monolayer, (II) the following h-1 layers, much less strongly sorbed, and (III) the remaining layers, up to infinity, of 'pure liquid' characteristics. The new three sorption stages (t.s.s.) isotherm embodies the classical two-parameter B.E.T. equation [stages 1(h = 1)-III] as well as the three-parameter Guggenheim-Anderson-De Boer (G.A.B.) equation [stages I-II (h = ∞)]. The t.s.s. isotherm, which necessarily uses a fourth parameter, retains the mathematical form of the older isotherms with two correction functions determined by the new constant h (extension of stages I and II), functions which become important only at high relative activities of the sorbate. The sorption stage III is evidenced by experimental data in this region: here the G.A.B. isotherm demands that the inverse of the mass sorbed per unit mass of sorbent should be linear in p/p°, while experimentally a deviation downwards is found, which is explained by the t.s.s. isotherm. The four parameters, determined by versatile, easy to apply, graphical methods, show a certain correlation with the type of interactions characterizing the experimental systems. With longer ranged interactions the extent of the sorption stage II increases from h = 8-15 (gas/solids) to h = 15-20 (water/biopolymers) and to h = 20-25 (water/electrolytes-polyelectrolytes). The applicability range of the t.s.s. isotherm extends up to at least p/p° = 0.95. |
|---|---|
| Bibliografía: | Brunauer, S., Emmet, P.H., Teller, E., (1938) J. Am. Chem. Soc., 60, pp. 309, 314 Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., (1940) J. Am. Chem. Soc., 62, p. 1723 Brunauer, S., (1945) The Adsorption of Gases and Vapours, , Clarendon Press, Oxford Hill, T.L., (1952) Adv. Catal., 4, p. 211 Gregg, S.J., Sing, K.S.W., (1967) Adsorption, Surface Area and Porosity, , Academic Press, New York Adamson, A.W., (1970) Physical Chemistry of Surfaces, , Interscience Publ., New York Langmuir, I., (1918) J. Am. Chem. Soc., 40, p. 1361 Anderson, R.B., (1946) J. Am. Chem. Soc., 68, p. 686 Anderson, R.B., Hall, K.W., (1948) J. Am. Chem. Soc., 70, p. 1727 De Boer, J.H., (1953) The Dynamical Character of Adsorption, , Clarendon Press, Oxford Guggenheim, E.A., (1966) Application of Statistical Mechanicsclarendon Press, Oxford, , chap. 11 Langmuir, I., (1918) J. Am. Chem. Soc., 40, p. 1375 Van Der Berg, C., Bruin, S., (1981) Water Activity: Influence on Food Quality, 1. , ed. L. B. Rockland and G. F. StewardAcademic Press, New York Van Der Berg, C., (1985) Properties of Water in Foods, p. 119. , ed. D. Simatos and J. L. Multon, Martinus-Nijhoff, Dordrecht Stokes, R.H., Robinson, R.H., (1948) J. Am. Chem. Soc., 70, p. 1870 Gascoyne, P.R.C., Pethig, R., (1977) J. Chem. Soc., Faraday Trans. 1, 73, p. 171 Grigera, J.R., Berendson, H.J.C., (1979) Biopolymers, 18, p. 47 Grigera, J.R., Mogilner, I.G., (1980) Indian Chem. Engineers, 22, p. 42 Timmermann, E.O., (1970) Z. Phys. Chem. N.F., 72, p. 140 Gregor, H.P., Sundheim, B.P., Held, K.M., Waxman, M.H., (1952) J. Colloid Sci., 7, p. 511 Boyd, G.E., Soldano, B.A., (1953) Z. Electrochem., 57, p. 162 Timmermann, E.O., (1970) Z. Phys. Chem. N.F., 70, p. 195 Timmermann, E.O., (1982) J. Chem. Soc., Faraday Trans. 1, 78, p. 2619 (1980) Water in Polymers, , ed. S. P. Rowland, Am. Chem. Soc. Symposium Series No. 127, Am. Chem. Society, Washington D.C Timmermann, E.O., Proc. 3Rd. Int. Meeting on Polymer Science and Technology, pp. 100-105. , 9-13th Nov. 1981, La Plata, Argentina Hill, T.L., (1956) Statistical Mechanics, , McGraw-Hill, New York Fowler, R.H., (1935) Proc. Camb. Phil. Soc. Math. Phys. Sci., 31, p. 260 Cassie, A.B.D., (1945) Trans. Faraday Soc., 41, p. 450 Hill, T.L., (1946) J. Chem. Phys., 14, p. 263 Cassel, H.M., (1944) J. Chem. Phys., 12, p. 115. , J. Phys. Chem., 1944, 48, 195 Jones, D.C., (1951) J. Chem. Soc., p. 126 , p. 200. , Ref. 7, and fig. 10 and 14; Harkins, J.W., Jura, G., (1944) J. Am. Chem. Soc., 66, p. 919. , fig. 5 Ref. 5(a), fig. 1; Whalen, J.W., (1961) J. Phys. Chem., 65, p. 1676 Bull, H.B., (1944) J. Am. Chem. Soc., 66, p. 1499 Ref. 12, table 1 and fig. 1; Robinson, R.H., Stokes, R.H., (1959) Electrolyte Solutions, p. 477. , Butterworth, London, App. 8.4, and App. 8.11, p. 510 Waxman, M.H., Sundheim, B.R., Gregor, H.P., (1953) J. Phys. Chem., 57, p. 969 Ref. 16, table 1 and fig. 1; Zettlemoyer, A.C., Micale, F.J., Klier, K., (1975) Water, a Comprehensive Treatise, 5. , ed. F. FranksPlenum Press, New York, chap. 5 |
| ISSN: | 03009599 |
| DOI: | 10.1039/F19898501631 |