Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils

The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the pred...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Nudelman, N.S
Otros Autores: Ríos, S.M, Katusich, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the prediction of crude oil isotherms. The difference between the predicted and experimental oil isotherms was only 13%, which indicates the reliability of the model. The distribution coefficients, Kd of soil samples containing oil residuals of different ages, were also determined using methanol as a co-solvent. Desorption experiments showed that they are a function of the polarity of the liquid phases; the Kds, calculated by applying a model derived from the solvophobic theory, increase with increasing age. On the other hand, the natural attenuation of oil spills was studied by using GC and 1H NMR techniques. Signals for four types of aliphatic and for the aromatic protons were clearly assigned; signals for alcohol (OH) and carboxylic (COOH) protons were also observed; compounds exhibiting these polar groups are usually not detected in the GC-FID conventional analysis. The principal component analysis (PCA) of Kd and the parameters determined by GC and NMR, showed that the first and second PC, accounted for more than 95 and 81% of variance, for NMR and GC parameters, respectively. The detailed results suggest that the 1H NMR data would be more useful than GCs to evaluate the environmental transformations that oil spills undergo in Patagonian soils. Nevertheless, direct extrapolation of the present results to other environments is not possible because the changes depend strongly on the original chemical composition of the crude oil and the variable exposure conditions along the time. Copyright © 2008 John Wiley & Sons, Ltd.
Bibliografía:Dragun, J., (1998) The Soil Chemistry of the Hazardous Materials, , Amherst Scientific Publishers, Massachusetts
Cornelissen, G., Van Noort, P.C.M., Parsons, J.R., Govers, H.A.J., (1997) Environ. Sci. Technol, 31, pp. 454-460
Nudelman, N.S., Ríos, S.M., Katusich 0, (2003) Interfacial Applications in Environmental Engineering, , Ed, M. A. Keane, Marcel Dekker Inc, New York
Huang, W., Weber, W.A., (1997) Environ. Sci. Technol, 31, pp. 2562-2569
Nudelman, N., Ríos, S.M., Katusich 0, (2002) Environ. Technol, 23, pp. 961-970
Nudelman, N., Ríos, S.M., Katusich, O., (2000) Environ. Technol, 21, pp. 437-447
Marczewski, A.W., Szymula, M., (2002) Coll. Surf. A, 208, pp. 259-266
Lee, S.Y., Kim, S.J., (2002) Appl. Clay Sci, 22, pp. 55-63
Jain, A.K., Gupta, V.K., Bhatnagar, A., Suhas, J., (2003) J. Hazard. Mater, B101, pp. 31-42
Chern, J.M., Chien, Y.W., (2003) Water Res, 37, pp. 2347-2356
Parker, A., Rae, J.E., (1998) Environmental Interactions of Clays, , Springer-Verlag Berlin, Heidelberg, New York
White, J.C., Pignatello, J.J., (1999) Environ. Sci. Technol, 33, pp. 4292-4298
Chung, N., Martin, A., (1998) Environ. Sci. Technol, 32, pp. 855-860
Dwarakanath, V., Pope, G., (1998) Environ. Sci. Technol, 32, pp. 1662-1666
Ríos, S.M., Nudelman, N.S., Katusich, O., (2004) Latin Am. Appl. Res. J, 34, pp. 149-153
Sugiura, K., Ishihara, M., Shimauchi, T., Harayama, S., (1997) Environ. Sci. Technol, 31, pp. 45-51
Dutta, T.K., Harayama, S., (2000) Environ. Sci. Technol, 34, pp. 1500-1505
Prince, R.C., Garrett, R.M., Bare, R.E., Grossman, M.J., Townsend, T., Suflita, J.M., Lee, K., Lessard, R.R., (2003) Spill Sci. Tech. Bull, 8 (2), pp. 145-156
Blomberg, J., Schoenmakers, U.A., Brinkman, U.A.T., (2002) J. Chromatogr. A, 972, pp. 137-173
Barron, M.G., Ka'Aihue, L., (2001) Mar. Pollut. Bull, 43 (1-2), pp. 86-92
Barakat, A.O., Qian, Y., Kim, M., Kennicutt, M.C., (2001) Environ. Int, 27, pp. 291-310
Barakat, A.O., Mostafa, A.R., Qian, Y., Kennicut, M.C., (2002) Spill Sci. Tech. Bull, 7, pp. 229-239
Snape, I., Ferguson, S.H., Harvey, P.M.A., Riddle, M.J., (2006) Chemosphere, 63, pp. 89-98
Hairber, S., Buddrus, J., (2002) Fuel, 81, pp. 981-987
Speight, J.G., (1991) The Chemistry and Technology of Petroleum, , Marcel Dekker, New York
Kapur, G.S., Singh, A.P., Sarpal, A.S., (2000) Fuel, 79, pp. 1023-1029
Yang, Y., Liu, B., Xi, H., Sun, X., Zhang, T., (2003) Fuel, 82, pp. 721-727
Harrison, A., (1995) Fractals in Chemistry, pp. 69-72. , Oxford Science Publications, Oxford
Rios, S.M., Nudelman, N.S., (2005) J. Disp. Sci. Technol, 26, pp. 1-8
Hundal, L.S., Thompson, M.L., Laird, D.A., Carmo, A.M., (2001) Environ. Sci. Technol, 35, pp. 3456-3461
Szymula, M., Marczewski, A.W., (2002) Appl. Surf. Sci, 196, pp. 301-311
Katritzky, A.R., Tamm, T., Wang, Y., Karelson, M., (1999) J. Chem. Inf. Comput. Sci, 39, pp. 692-699
Macleod, C.J.A., Semple, K.T., (2000) Environ. Sci. Technol, 34, pp. 4952-4957
Dutta, T.K., Harayama, S., (2001) Environ. Sri. Technol, 35, pp. 102-107
Galimberti, R., Ghiselli, C., Chiaramonte, M.A., (2000) Org. Geochem, 31, pp. 1375-1386
Tomczyk, N.A., Winans, R.E., (2001) Energy Fuels, 15, pp. 1498-1504
Maki, H., Sasaki, T., Harayama, S., (2001) Chemosphere, 44, pp. 1145-1151
Yong, T.M., Mohamed, A., Warkentin, B., (1992) The Principles of Contaminant Transport in Soils, , Elsevier, NY
Ríos, S.M., Nudelman, N.S., The complete set of data of the GC analyses for all the samples and full details on the procedures will be submitted elsewhere
Brandyik, J., Daling, S., (1998) Chemom. Intell. Lab. Syst, 42, pp. 73-91
Kapur, G.S., Berger, S., (2002) Fuel, 81, pp. 883-892
C. A. Sylwan, J. Iberian Geol. 2001, 27, 123-157; Nakamatsu, V., Luque, J., Ciano, N., Amari, M., Utrilla, V., Lisoni, C., 3era Jornadas de Preservatión de Agua, Aire y Suelo en la Industria del Petroleo y del Gas; IAPG II, pp. 213-222
Commendatore, M.G., Esteves, J.L., Colombo, J.C., (2000) Mar. Pollut. Bull, 40, pp. 989-998
Mu, L., Drago, R.S., Richarson, D.E., (1998) J. Chem. Soc. Perkin. Trans, 2, pp. 159-164
Fowler, F.W., Katritzky, A.R., Rutherford, R.J.D., (1971) J. Chem. Soc. B, p. 460
Davis, K.M.C., (1967) J. Chem. Soc. B, pp. 1128-1130
Walter, W., Bauer, 0.H., (1977) Liebigs Ann. Chem, pp. 421-429
Swain, C.G., Swain, M.S., Powell, A.L., Alunni, S., (1983) J. Am. Chem. Soc, 105, pp. 502-513
Oshima, T., Arikata, S., Nagai, T., (1981) J. Chem. Res, pp. 204-205. , S
Buncel, E., Rajagopal, S., (1989) J. Org. Chem, 54, pp. 798-809
Catalán, J., Díaz, C., López, V., Pérez, P., de Paz, J.L.G., Rodríguez, J.G., (1996) Liebigs Ann, pp. 1785-1794
Sergent, M., Luu, R.P.T., Elguero, J., (1997) Anales de Quím, 93, pp. 71-76. , Int. Ed
Laurence, C., Queignee-Cabanetos, M., Dziembowska, T., Queignee, R., Wojtkowiak, B., (1981) J. Am. Chem. Soc, 103, pp. 2567-2573
ISSN:08943230
DOI:10.1002/poc.1335