Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils
The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the pred...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the prediction of crude oil isotherms. The difference between the predicted and experimental oil isotherms was only 13%, which indicates the reliability of the model. The distribution coefficients, Kd of soil samples containing oil residuals of different ages, were also determined using methanol as a co-solvent. Desorption experiments showed that they are a function of the polarity of the liquid phases; the Kds, calculated by applying a model derived from the solvophobic theory, increase with increasing age. On the other hand, the natural attenuation of oil spills was studied by using GC and 1H NMR techniques. Signals for four types of aliphatic and for the aromatic protons were clearly assigned; signals for alcohol (OH) and carboxylic (COOH) protons were also observed; compounds exhibiting these polar groups are usually not detected in the GC-FID conventional analysis. The principal component analysis (PCA) of Kd and the parameters determined by GC and NMR, showed that the first and second PC, accounted for more than 95 and 81% of variance, for NMR and GC parameters, respectively. The detailed results suggest that the 1H NMR data would be more useful than GCs to evaluate the environmental transformations that oil spills undergo in Patagonian soils. Nevertheless, direct extrapolation of the present results to other environments is not possible because the changes depend strongly on the original chemical composition of the crude oil and the variable exposure conditions along the time. Copyright © 2008 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografía: | Dragun, J., (1998) The Soil Chemistry of the Hazardous Materials, , Amherst Scientific Publishers, Massachusetts Cornelissen, G., Van Noort, P.C.M., Parsons, J.R., Govers, H.A.J., (1997) Environ. Sci. Technol, 31, pp. 454-460 Nudelman, N.S., Ríos, S.M., Katusich 0, (2003) Interfacial Applications in Environmental Engineering, , Ed, M. A. Keane, Marcel Dekker Inc, New York Huang, W., Weber, W.A., (1997) Environ. Sci. Technol, 31, pp. 2562-2569 Nudelman, N., Ríos, S.M., Katusich 0, (2002) Environ. Technol, 23, pp. 961-970 Nudelman, N., Ríos, S.M., Katusich, O., (2000) Environ. Technol, 21, pp. 437-447 Marczewski, A.W., Szymula, M., (2002) Coll. Surf. A, 208, pp. 259-266 Lee, S.Y., Kim, S.J., (2002) Appl. Clay Sci, 22, pp. 55-63 Jain, A.K., Gupta, V.K., Bhatnagar, A., Suhas, J., (2003) J. Hazard. Mater, B101, pp. 31-42 Chern, J.M., Chien, Y.W., (2003) Water Res, 37, pp. 2347-2356 Parker, A., Rae, J.E., (1998) Environmental Interactions of Clays, , Springer-Verlag Berlin, Heidelberg, New York White, J.C., Pignatello, J.J., (1999) Environ. Sci. Technol, 33, pp. 4292-4298 Chung, N., Martin, A., (1998) Environ. Sci. Technol, 32, pp. 855-860 Dwarakanath, V., Pope, G., (1998) Environ. Sci. Technol, 32, pp. 1662-1666 Ríos, S.M., Nudelman, N.S., Katusich, O., (2004) Latin Am. Appl. Res. J, 34, pp. 149-153 Sugiura, K., Ishihara, M., Shimauchi, T., Harayama, S., (1997) Environ. Sci. Technol, 31, pp. 45-51 Dutta, T.K., Harayama, S., (2000) Environ. Sci. Technol, 34, pp. 1500-1505 Prince, R.C., Garrett, R.M., Bare, R.E., Grossman, M.J., Townsend, T., Suflita, J.M., Lee, K., Lessard, R.R., (2003) Spill Sci. Tech. Bull, 8 (2), pp. 145-156 Blomberg, J., Schoenmakers, U.A., Brinkman, U.A.T., (2002) J. Chromatogr. A, 972, pp. 137-173 Barron, M.G., Ka'Aihue, L., (2001) Mar. Pollut. Bull, 43 (1-2), pp. 86-92 Barakat, A.O., Qian, Y., Kim, M., Kennicutt, M.C., (2001) Environ. Int, 27, pp. 291-310 Barakat, A.O., Mostafa, A.R., Qian, Y., Kennicut, M.C., (2002) Spill Sci. Tech. Bull, 7, pp. 229-239 Snape, I., Ferguson, S.H., Harvey, P.M.A., Riddle, M.J., (2006) Chemosphere, 63, pp. 89-98 Hairber, S., Buddrus, J., (2002) Fuel, 81, pp. 981-987 Speight, J.G., (1991) The Chemistry and Technology of Petroleum, , Marcel Dekker, New York Kapur, G.S., Singh, A.P., Sarpal, A.S., (2000) Fuel, 79, pp. 1023-1029 Yang, Y., Liu, B., Xi, H., Sun, X., Zhang, T., (2003) Fuel, 82, pp. 721-727 Harrison, A., (1995) Fractals in Chemistry, pp. 69-72. , Oxford Science Publications, Oxford Rios, S.M., Nudelman, N.S., (2005) J. Disp. Sci. Technol, 26, pp. 1-8 Hundal, L.S., Thompson, M.L., Laird, D.A., Carmo, A.M., (2001) Environ. Sci. Technol, 35, pp. 3456-3461 Szymula, M., Marczewski, A.W., (2002) Appl. Surf. Sci, 196, pp. 301-311 Katritzky, A.R., Tamm, T., Wang, Y., Karelson, M., (1999) J. Chem. Inf. Comput. Sci, 39, pp. 692-699 Macleod, C.J.A., Semple, K.T., (2000) Environ. Sci. Technol, 34, pp. 4952-4957 Dutta, T.K., Harayama, S., (2001) Environ. Sri. Technol, 35, pp. 102-107 Galimberti, R., Ghiselli, C., Chiaramonte, M.A., (2000) Org. Geochem, 31, pp. 1375-1386 Tomczyk, N.A., Winans, R.E., (2001) Energy Fuels, 15, pp. 1498-1504 Maki, H., Sasaki, T., Harayama, S., (2001) Chemosphere, 44, pp. 1145-1151 Yong, T.M., Mohamed, A., Warkentin, B., (1992) The Principles of Contaminant Transport in Soils, , Elsevier, NY Ríos, S.M., Nudelman, N.S., The complete set of data of the GC analyses for all the samples and full details on the procedures will be submitted elsewhere Brandyik, J., Daling, S., (1998) Chemom. Intell. Lab. Syst, 42, pp. 73-91 Kapur, G.S., Berger, S., (2002) Fuel, 81, pp. 883-892 C. A. Sylwan, J. Iberian Geol. 2001, 27, 123-157; Nakamatsu, V., Luque, J., Ciano, N., Amari, M., Utrilla, V., Lisoni, C., 3era Jornadas de Preservatión de Agua, Aire y Suelo en la Industria del Petroleo y del Gas; IAPG II, pp. 213-222 Commendatore, M.G., Esteves, J.L., Colombo, J.C., (2000) Mar. Pollut. Bull, 40, pp. 989-998 Mu, L., Drago, R.S., Richarson, D.E., (1998) J. Chem. Soc. Perkin. Trans, 2, pp. 159-164 Fowler, F.W., Katritzky, A.R., Rutherford, R.J.D., (1971) J. Chem. Soc. B, p. 460 Davis, K.M.C., (1967) J. Chem. Soc. B, pp. 1128-1130 Walter, W., Bauer, 0.H., (1977) Liebigs Ann. Chem, pp. 421-429 Swain, C.G., Swain, M.S., Powell, A.L., Alunni, S., (1983) J. Am. Chem. Soc, 105, pp. 502-513 Oshima, T., Arikata, S., Nagai, T., (1981) J. Chem. Res, pp. 204-205. , S Buncel, E., Rajagopal, S., (1989) J. Org. Chem, 54, pp. 798-809 Catalán, J., Díaz, C., López, V., Pérez, P., de Paz, J.L.G., Rodríguez, J.G., (1996) Liebigs Ann, pp. 1785-1794 Sergent, M., Luu, R.P.T., Elguero, J., (1997) Anales de Quím, 93, pp. 71-76. , Int. Ed Laurence, C., Queignee-Cabanetos, M., Dziembowska, T., Queignee, R., Wojtkowiak, B., (1981) J. Am. Chem. Soc, 103, pp. 2567-2573 |
| ISSN: | 08943230 |
| DOI: | 10.1002/poc.1335 |