A twisted FZZ-like dual for the 2D black hole
We study the duality between string theory formulated on a curved exact background (the two-dimensional black hole) and string theory in flat space with a tachyon-like potential. We generalize previous results on this subject by discussing a twisted version of the Fateev-Zamolodchikov-Zamolodchikov...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2008
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | We study the duality between string theory formulated on a curved exact background (the two-dimensional black hole) and string theory in flat space with a tachyon-like potential. We generalize previous results on this subject by discussing a twisted version of the Fateev-Zamolodchikov-Zamolodchikov conjecture (FZZ). This duality is shown to hold at the level of N-point correlation functions on the sphere topology, and connects tree-level string amplitudes in the Euclidean version of the 2D black hole to correlation functions in a nonlinear sigma-model in flat space but in presence of a tachyon wall potential and a linear dilaton. The dual CFT we propose here corresponds to the perturbed 2D quantum gravity coupled to c < 1 matter, where the operator that describes the tachyon-like potential can be seen as an n = 2 momentum mode perturbation, while the usual sine-Liouville potential involved in the FZZ duality would correspond to the vortex sector n = 1. We give a precise prescription for computing correlation functions in the twisted model. © 2008 Polish Scientific Publishers PWN, Warszawa. |
---|---|
Bibliografía: | N. Seiberg: Emergent spacetime [arXiv:hep-th/0601234]; V. Fateev, A. B. Zamolodchikov and Al. Zamolodchikov, unpublished; Baseilhac, P., Fateev, V., (1998) Nucl. Phys., B 532, p. 567 Fukuda, T., Hosomichi, K., (2001) JHEP, 109, p. 003 Kazakov, V., Kostov, I., Kutasov, D., (2002) Nucl. Phys., B622, p. 141 Eguchi, M., (1993) Phys. Lett., B316, p. 74 Mukherjee, A., Mukhi, S., Pakman, A., (2007) JHEP, 701, p. 025 Witten, E., (1991) Phys. Rev. D, 44, p. 314 Giribet, G., Núñez, C., (2001) JHEP, 106, p. 010 Becker, K., Becker, M., (1994) Nucl. Phys., B418, p. 206 V. Fateev: Relation between Sine-Liouville and Liouville correlation functions, unpublished; A. Stoyanovsky: A relation between the Knizhnik- Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations, [arXiv:math-ph/0012013]; Ribault, S., Teschner, J., (2005) JHEP, 506, p. 014 Ribault, S., (2005) JHEP, 509, p. 045 Giribet, G., (2006) Nucl. Phys., B737, p. 209 Giribet, G., (2006) Phys. Lett., B637, p. 192 Nakamura, S., Niarchos, V., (2005) JHEP, 510, p. 025 Pakman, A., (2006) JHEP, 611, p. 055 Sahakyan, D., Takayanagi, T., (2006) JHEP, 606, p. 027 Goulian, M., Li, M., (1991) Phys. Rev. Lett., 66, p. 2051 Y. Hikida and V. Schomerus: H |
ISSN: | 00344877 |
DOI: | 10.1016/S0034-4877(08)00011-6 |