A twisted FZZ-like dual for the 2D black hole

We study the duality between string theory formulated on a curved exact background (the two-dimensional black hole) and string theory in flat space with a tachyon-like potential. We generalize previous results on this subject by discussing a twisted version of the Fateev-Zamolodchikov-Zamolodchikov...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Giribet, G.
Otros Autores: Leoni, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We study the duality between string theory formulated on a curved exact background (the two-dimensional black hole) and string theory in flat space with a tachyon-like potential. We generalize previous results on this subject by discussing a twisted version of the Fateev-Zamolodchikov-Zamolodchikov conjecture (FZZ). This duality is shown to hold at the level of N-point correlation functions on the sphere topology, and connects tree-level string amplitudes in the Euclidean version of the 2D black hole to correlation functions in a nonlinear sigma-model in flat space but in presence of a tachyon wall potential and a linear dilaton. The dual CFT we propose here corresponds to the perturbed 2D quantum gravity coupled to c < 1 matter, where the operator that describes the tachyon-like potential can be seen as an n = 2 momentum mode perturbation, while the usual sine-Liouville potential involved in the FZZ duality would correspond to the vortex sector n = 1. We give a precise prescription for computing correlation functions in the twisted model. © 2008 Polish Scientific Publishers PWN, Warszawa.
Bibliografía:N. Seiberg: Emergent spacetime [arXiv:hep-th/0601234]; V. Fateev, A. B. Zamolodchikov and Al. Zamolodchikov, unpublished; Baseilhac, P., Fateev, V., (1998) Nucl. Phys., B 532, p. 567
Fukuda, T., Hosomichi, K., (2001) JHEP, 109, p. 003
Kazakov, V., Kostov, I., Kutasov, D., (2002) Nucl. Phys., B622, p. 141
Eguchi, M., (1993) Phys. Lett., B316, p. 74
Mukherjee, A., Mukhi, S., Pakman, A., (2007) JHEP, 701, p. 025
Witten, E., (1991) Phys. Rev. D, 44, p. 314
Giribet, G., Núñez, C., (2001) JHEP, 106, p. 010
Becker, K., Becker, M., (1994) Nucl. Phys., B418, p. 206
V. Fateev: Relation between Sine-Liouville and Liouville correlation functions, unpublished; A. Stoyanovsky: A relation between the Knizhnik- Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations, [arXiv:math-ph/0012013]; Ribault, S., Teschner, J., (2005) JHEP, 506, p. 014
Ribault, S., (2005) JHEP, 509, p. 045
Giribet, G., (2006) Nucl. Phys., B737, p. 209
Giribet, G., (2006) Phys. Lett., B637, p. 192
Nakamura, S., Niarchos, V., (2005) JHEP, 510, p. 025
Pakman, A., (2006) JHEP, 611, p. 055
Sahakyan, D., Takayanagi, T., (2006) JHEP, 606, p. 027
Goulian, M., Li, M., (1991) Phys. Rev. Lett., 66, p. 2051
Y. Hikida and V. Schomerus: H
ISSN:00344877
DOI:10.1016/S0034-4877(08)00011-6