Chaos in classical cosmology

We study the dynamics of a Friedmann-Robertson-Walker universe conformally coupled to a real, self-interacting, massive scalar field. We apply a full set of tools corresponding to dynamical system theory: fixed points, linear stability analysis, resonances study and numerical evaluation of Poincaré...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Blanco, S.
Otros Autores: Domenech, Graciela, Hasi, C.E, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers-Plenum Publishers 1994
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We study the dynamics of a Friedmann-Robertson-Walker universe conformally coupled to a real, self-interacting, massive scalar field. We apply a full set of tools corresponding to dynamical system theory: fixed points, linear stability analysis, resonances study and numerical evaluation of Poincaré sections of the dynamical flux. We can conclude that the chaotic behaviour is possible in the very early universe. In the case of a spatially closed universe we show that the route to chaos is reached by successive breaking of the resonant tori due to the action of 1:1 resonances. © 1994 Plenum Publishing Corporation.
Bibliografía:Barrow, J.D., (1982) Phys. Rep., 85, p. 1
Kolb, E., Turner, M.S., (1990) The Early Universe, , Addison-Wesley, New York
Belinsky, V.A., Grishchuk, L.P., Khalatnikov, I.M., Zel'dovich, (1985) Phys. Lett., 155 B, p. 232
Amendola, L., Litterio, M., Occhionero, F., THE PHASE-SPACE VIEW OF INFLATION I: THE NON-MINIMALLY COUPLED SCALAR FIELD (1990) International Journal of Modern Physics A, 5 A, p. 3861
Calzetta, E., El Hasi, C., (1993) Class. Quant. Grav., 10, p. 1825
Berger, B.K., Moncrief, V., (1993) Phys. Rev., 48 D, p. 4676
Misner, C.W., Thorne, K.S., Wheeler, J.A., (1973) Gravitation, , W. H. Freeman, San Francisco
Gutzwiller, M.C., (1990) Chaos in Classical and Quantum Mechanics, , Springer-Verlag, Berlin
Tabor, M., (1989) Chaos and Integrability in Nonlinear Dynamic, , John Wiley & Sons, New York
Schuster, H.G., (1984) Deterministic Chaos, , Physik-Verlag, Berlin
Stolovistzky, G., Hernando, J.A., Resonant structure of integrable and near-integrable two-dimensional systems (1990) Physical Review A, 41 A, p. 3026
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in Fortran, , 2nd ed., Cambridge University Press, Cambridge
Channell, P.J., Scovel, C., (1990) Nonlinearity, 3, p. 231
ISSN:00017701
DOI:10.1007/BF02108938