Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmologi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Giribet, G.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2003
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.
Bibliografía:Tseytlin, A.A., (1991) Phys. Lett. B, 264, p. 311
Teitelboim, C., (1983) Phys. Lett. B, 126, p. 41
Jackiw, R., (1984) Quantum Theory of Gravity, , ed C Christiansen (Bristol: Hilger)
Teitelboim, C., (1984) Quantum Theory of Gravity, , ed S Christiansen (Bristol: Hilger)
Chamseddine, A.H., (1991) Phys. Lett. B, 256, p. 379
Mazzitelli, D.F., Mohammedi, N., (1993) Nucl. Phys. B, 401, p. 239. , Preprint hep-th/9109016
David, F., (1988) Mod. Phys. Lett. A, 3, p. 1651
Polyakov, A.M., (1981) Phys. Lett. B, 163, p. 207
Polyakov, A.M., (1987) Mod. Phys. Lett. A, 2, p. 899
Mazzitelli, D.F., Mohammedi, N., (1991) Phys. Lett. B, 268, p. 12
Mohammedi, N., (1991) Constant Curvature and Non-perturbative W3 Gravity, , Preprint hep-th/9109031
Burwick, T.T., Camseddine, A.H., (1992) Nucl. Phys. B, 384, p. 411. , Preprint hep-th/9204002
Camseddine, A.H., (1992) Nucl. Phys. B, 368, p. 98
Shapiro, I.L., (1995) Perturbative Approach to the Two-dimensional Quantum Gravity, , Preprint hep-th/9509065
Andreev, O., (1998) Phys. Rev. D, 57, p. 3725. , Preprint hep-th/9710107
Polchinski, J., (1998) String Theory, an Introduction to Bosonic String Theory, 1. , Cambridge: Cambridge University Press
Distler, J., Kawai, H., (1989) Nucl. Phys. B, 321, p. 509
Becker, K., (1994) Strings, Black Holes and Conformal Field Theory, , PhD Thesis (Preprint hep-th/9404157)
Witten, E., (1991) Phys. Rev. D, 44, p. 314
Goulian, M., Li, M., (1991) Phys. Rev. Lett., 66, p. 2051
Di Francesco, P., Kutasov, D., (1991) Phys. Lett. B, 261, p. 385
Di Francesco, P., Kutasov, D., (1992) Nucl. Phys. B, 375, p. 119
Dotsenko, V.S., Fateev, V.A., (1984) Nucl. Phys. B, 240, p. 312
Dotsenko, V.S., (1991) Mod. Phys. Lett. A, 6, p. 3601
Kogan, I.I., Lewis, A., (1998) Nucl. Phys. B, 509, p. 687. , Preprint hep-th/9705240
ISSN:02649381
DOI:10.1088/0264-9381/20/11/312