Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory
The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmologi...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2003
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect. |
|---|---|
| Bibliografía: | Tseytlin, A.A., (1991) Phys. Lett. B, 264, p. 311 Teitelboim, C., (1983) Phys. Lett. B, 126, p. 41 Jackiw, R., (1984) Quantum Theory of Gravity, , ed C Christiansen (Bristol: Hilger) Teitelboim, C., (1984) Quantum Theory of Gravity, , ed S Christiansen (Bristol: Hilger) Chamseddine, A.H., (1991) Phys. Lett. B, 256, p. 379 Mazzitelli, D.F., Mohammedi, N., (1993) Nucl. Phys. B, 401, p. 239. , Preprint hep-th/9109016 David, F., (1988) Mod. Phys. Lett. A, 3, p. 1651 Polyakov, A.M., (1981) Phys. Lett. B, 163, p. 207 Polyakov, A.M., (1987) Mod. Phys. Lett. A, 2, p. 899 Mazzitelli, D.F., Mohammedi, N., (1991) Phys. Lett. B, 268, p. 12 Mohammedi, N., (1991) Constant Curvature and Non-perturbative W3 Gravity, , Preprint hep-th/9109031 Burwick, T.T., Camseddine, A.H., (1992) Nucl. Phys. B, 384, p. 411. , Preprint hep-th/9204002 Camseddine, A.H., (1992) Nucl. Phys. B, 368, p. 98 Shapiro, I.L., (1995) Perturbative Approach to the Two-dimensional Quantum Gravity, , Preprint hep-th/9509065 Andreev, O., (1998) Phys. Rev. D, 57, p. 3725. , Preprint hep-th/9710107 Polchinski, J., (1998) String Theory, an Introduction to Bosonic String Theory, 1. , Cambridge: Cambridge University Press Distler, J., Kawai, H., (1989) Nucl. Phys. B, 321, p. 509 Becker, K., (1994) Strings, Black Holes and Conformal Field Theory, , PhD Thesis (Preprint hep-th/9404157) Witten, E., (1991) Phys. Rev. D, 44, p. 314 Goulian, M., Li, M., (1991) Phys. Rev. Lett., 66, p. 2051 Di Francesco, P., Kutasov, D., (1991) Phys. Lett. B, 261, p. 385 Di Francesco, P., Kutasov, D., (1992) Nucl. Phys. B, 375, p. 119 Dotsenko, V.S., Fateev, V.A., (1984) Nucl. Phys. B, 240, p. 312 Dotsenko, V.S., (1991) Mod. Phys. Lett. A, 6, p. 3601 Kogan, I.I., Lewis, A., (1998) Nucl. Phys. B, 509, p. 687. , Preprint hep-th/9705240 |
| ISSN: | 02649381 |
| DOI: | 10.1088/0264-9381/20/11/312 |