Dynamics of quantum trajectories in chaotic systems

Quantum trajectories defined in the de Broglie-Bohm theory provide a causal way to interpret physical phenomena. In this letter, we use this formalism to analyze the short-time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wisniacki, D.A
Otros Autores: Borondo, F., Benito, R.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2003
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Quantum trajectories defined in the de Broglie-Bohm theory provide a causal way to interpret physical phenomena. In this letter, we use this formalism to analyze the short-time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play a very important role. We find that the topologies of the quantum orbits are much more complicated than that of the scarring and associated periodic orbits, since the former have quantum interference built in. Thus scar wave functions are necessary to analyze the corresponding dynamics. Moreover, these topologies imply different return routes to the vicinity of the initial positions, and this reflects in the existence of different contributions in each peak of the survival probability function.
Bibliografía:Jammer, M., (1989) The Conceptual Development of Quantum Mechanics, , American Institute of Physics, Madison
Von Neumann, J., (1955) Mathematical Foundations of Quantum Mechanics, , Princeton University Press, Princeton
Bohm, D., (1952) Phys. Rev., 85, p. 166
Holland, P.R., (1993) The Quantum Theory of Motion, , Cambridge University Press, Cambridge
De Broglie, L., (1925) Ann. Phys. (Paris), 3, p. 22
Sales Mayor, F., Askar, A., Rabitz, H.A., (1999) J. Chem. Phys., 111, p. 2423
Sanz, A.S., Borondo, F., Miret-Arté, S.S., (2000) Phys. Rev. B, 61, p. 7743
(2001) Europhys. Lett., 55, p. 303
(2002) J. Phys. Condens. Matter, 14, p. 6109
Gindensperger, E., Meier, C., Beswick, J.A., (2002) J. Chem. Phys., 116, p. 8
Gin-Densperger, E., Meier, C., Beswick, J.A., Heitz, M.-C., (2002) J. Chem. Phys., 116, p. 10051
Guantes, R., Margalef-Roig, R., Sanz, A.S., Borondo, F., Miret-Artés, S., Surf. Sci. Rep.
Wyatt, R.E., (2001) Phys. Rev. Lett., 86, p. 3215
Prezhdo, O.V., Brooksby, C., (2001) Phys. Rev. Lett., 86, p. 32151
Gutzwiller, M.C., (1990) Chaos in Classical and Quantum Mechanics, , Springer-Verlag, New York
Haake, F., (2001) Quantum Signatures of Chaos, , Springer-Verlag, Berlin
Parmenter, R.H., Valentine, R.W., (1995) Phys. Lett. A, 201, p. 1
Konkel, S., Malowski, A.J., (1998) Phys. Lett. A, 238, p. 95
Heller, E.J., (1984) Phys. Rev. Lett., 53, p. 1515
Heller, E.J., (1991) Chaos and Quantum Physics, , edited by GIANNONI M. J., VOROS A. and ZINN-JUSTIN J. (Elsevier, Amsterdam)
Madelung, E., (1926) Z. Phys., 40, p. 332
Wisniacki, D.A., Borondo, F., Vergini, E., Benito, R.M., (2000) Phys. Rev. E, 62, pp. R7583
De Polavieja, G.G., Borondo, F., Benito, R.M., (1994) Phys. Rev. Lett., 73, p. 1613
Hernando, L., Wisniacki, D., Borondo, F., Benito, R.M., in preparation; Muga, J.G., Sala, R., Egusquiza, I.L., (2002) Time in Quantum Mechanics, , Springer-Verlag, Berlin
Wisniacki, D.A., Borondo, F., Vergini, E., Benito, R.M., (2001) Phys. Rev. E, 63, p. 066220
Vergini, E.G., Carlo, G.G., (2001) J. Phys. A, 34, p. 4525
ISSN:02955075
DOI:10.1209/epl/i2003-00231-y