Heterologous expression of a plant arginine decarboxylase gene in Trypanosoma cruzi

Wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity. However, the transformation of these parasites with a recombinant plasmid containing the oat ADC cDNA coding region gave rise to the transient heterologous expression of the enzyme, suggesting the absence...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Carrillo, C.
Otros Autores: Serra, M.P, Pereira, C.A, Huber, A., González, N.S, Algranati, I.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity. However, the transformation of these parasites with a recombinant plasmid containing the oat ADC cDNA coding region gave rise to the transient heterologous expression of the enzyme, suggesting the absence of endogenous mechanisms that could inhibit the expression of a hypothetical own ADC gene or the assay used to measure its enzymatic activity. The foreign ADC enzyme expressed in the transgenic T. cruzi was characterized by identification of the products, the stoichiometry of the catalysed reaction, the specific inhibition by α-difluoromethylarginine (DFMA) and the study of its metabolic turnover. The half-life of the heterologous ADC activity in T. cruzi was about 150 min. Bioinformatics studies and polymerase chain reaction (PCR) analyses seem to indicate the absence of ADC-like DNA sequences in the wild-type T. cruzi genome. © 2004 Published by Elsevier B.V.
Bibliografía:Bacchi, C.J., Nathan, H.C., Hutner, S.H., Mc Cann, P.P., Sjoerdsma, A., Polyamine metabolism: A potential therapeutic target in trypanosomes (1980) Science, 210, pp. 332-334
Bacchi, C.J., Mc Cann, P.P., Parasitic protozoa and polyamines (1987) Inhibition of Polyamine Metabolism. Biological Significance and Bases for New Therapies, pp. 317-344. , P.P. Mc Cann A.E. Pegg A. Sjoerdsma Academic Press, Inc. Orlando, Fl
Van Nieuwenhove, S., Schechter, P.J., Declercq, J., Boné, G., Burke, J., Sjoerdsma, A., Treatment of gambiense sleeping sickness in the Sudan with oral DFMO, an inhibitor of ornithine decarboxylase: First field trial (1985) Trans. R. Soc. Trop. Med. Hyg., 79, pp. 692-698
Fairlamb, A.H., Cerami, A., Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids (1985) Mol. Biochem. Parasitol., 14, pp. 187-198
Fairlamb, A.H., Blackburn, P., Ulrich, P., Chait, B.T., Cerami, A., Trypanothione: A novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids (1985) Science, 227, pp. 1485-1487
Fairlamb, A.H., Cerami, A., Metabolism and functions of trypanothione in the Kinetoplastida (1992) Annu. Rev. Microbiol., 46, pp. 695-729
Phillips, M.A., Coffino, P., Wang, C.C., Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei (1987) J. Biol. Chem., 262, pp. 8721-8727
Sánchez, C.P., González, N.S., Algranati, I.D., Stable ornithine decarboxylase in promastigotes of Leishmania mexicana (1989) Biochem. Biophys. Res. Commun., 161, pp. 754-761
Hanson, S., Adelman, J., Ullman, B., Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani (1992) J. Biol. Chem., 267, pp. 2350-2359
Ghoda, L., Phillips, M.A., Bass, K.E., Wang, C.C., Coffino, P., Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation (1990) J. Biol. Chem., 265, pp. 11823-11826
Ghoda, L., Sidney, D., MacRae, M., Coffino, P., Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation (1992) Mol. Cell. Biol., 12, pp. 2178-2185
Assaraf, Y.G., Kahana, C., Spira, D.T., Bachrach, U., Plasmodium falciparum: Purification, properties and immunochemical study of ornithine decarboxylase, the key enzyme in polyamine biosynthesis (1988) Exp. Parasitol., 67, pp. 20-30
Hayashi, S., Murakami, Y., Rapid and regulated degradation of ornithine decarboxylase (1995) Biochem. J., 306, pp. 1-10
Carrillo, C., Cejas, S., Cortés, M., Ceriani, C., Huber, A., González, N.S., Algranati, I.D., Sensitivity of trypanosomatid protozoa to DFMO and metabolic turnover of ornithine decarboxylase (2000) Biochem. Biophys. Res. Commun., 279, pp. 663-668
Algranati, I.D., Sánchez, C., González, N.S., Polyamines in Trypanosoma cruzi and Leishmania mexicana (1990) The Biology and Chemistry of Polyamines, pp. 137-146. , S.H. Goldemberg I.D. Algranati Oxford Univ. Press Oxford
Hunter, K.J., Le Quesne, S.A., Fairlamb, A.H., Identification and biosynthesis of N 1-N 9-bis (glutathionyl) aminopropyl-cadaverine (homotrypanothione) in Trypanosoma cruzi (1994) Eur. J. Biochem., 226, pp. 1019-1027
Ariyanayagam, M.R., Fairlamb, A.H., Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes (1997) Mol. Biochem. Parasitol., 84, pp. 111-121
Müller, S., Coombs, G.H., Walter, R.D., Targeting polyamines of parasitic protozoa in chemotherapy (2001) Trends Parasitol., 17, pp. 242-249
Carrillo, C., Cejas, S., González, N.S., Algranati, I.D., Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme (1999) FEBS Lett., 454, pp. 192-196
Kierszenbaum, F., Wirth, J.J., Sjoerdsma, A., Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 4278-4282
Majumder, S., Wirth, J.J., Bitonti, A.J., Mc Cann, P.P., Kierszenbaum, F., Biochemical evidence for the presence of arginine decarboxylase activity in Trypanosoma cruzi (1992) J. Parasitol., 78, pp. 371-374
Hernández, S., Schwarcz De Tarlovsky, M., Arginine decarboxylase in Trypanosoma cruzi. Characteristics and kinetic properties (1999) Cell. Mol. Biol., 45, pp. 383-391
Piacenza, L., Peluffo, G., Radi, R., L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 7301-7306
Cohen, S.S., Pathways of polyamine metabolism in animals (1998) A Guide to the Polyamines, pp. 208-230. , S.S. Cohen Oxford Univ. Press New York
Hanfrey, C., Sommer, S., Mayer, M.J., Burtin, D., Michael, A.J., Arabidopsis polyamine biosynthesis: Absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity (2001) Plant J., 27, pp. 551-560
Carrillo, C., Cejas, S., Huber, A., González, N.S., Algranati, I.D., Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes (2003) J. Eukaryot. Microbiol., 50, pp. 312-316
Segura, E.L., Subias, E., Esteva, M., Cabeza Meckert, P., Brozina, A., Laguens, R.P., Características de infectividad de tres poblaciones de cultivo de Trypanosoma cruzi (1980) Medicina (B. Aires), 40, pp. 97-102
González Cappa, S.M., Katzin, A.M., Añasco, N., Lajmanovich, S., Comparative studies on infectivity and surface carbohydrates of several strains of Trypanosoma cruzi (1981) Medicina (B. Aires), 41, pp. 549-555
Cazzulo, J.J., Franke De Cazzulo, B.M., Engel, J.C., Cannata, J.J.B., End products and enzyme levels of aerobic glucose fermentation in trypanosomatids (1985) Mol. Biochem. Parasitol., 16, pp. 329-343
Brun, R., Schonenberger, M., Cultivation and in vivo cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium (1979) Acta Trop., 36, pp. 289-292
Cataldi, A.A., Algranati, I.D., Polyamines and regulation of ornithine decarboxylase biosynthesis in Escherichia coli (1989) J. Bacteriol., 171, pp. 1998-2002
Bell, E., Malmberg, R.L., Analysis of a cDNA-encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing (1990) Mol. Gen. Genet., 224, pp. 431-436
Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Martínez-Calvillo, S., López, I., Hernández, R., P-RIBOTEX expression vector: PTEX derivative for a rapid selection of Trypanosoma cruzi transfectans (1997) Gene, 199, pp. 71-76
Hariharan, S., Ajioka, J., Swindle, J., Stable transformation of Trypanosoma cruzi: Inactivation of the PUB12,5 polyubiquitin gene by targeted gene disruption (1993) Mol. Biochem. Parasitol., 57, pp. 15-30
Medina-Acosta, E., Cross, G.A.M., Rapid isolation of DNA from trypanosomatid protozoa using a simple "mini-prep" procedure (1993) Mol. Biochem. Parasitol., 59, pp. 327-330
Malmberg, R.L., Cellino, M.L., Arginine decarboxylase of oats is activated by enzymatic cleavage into two polypeptdies (1994) J. Biol. Chem., 269, pp. 2703-2706
Ceriani, C., González, N.S., Algranati, I.D., Ornithine decarboxylase from Crithidia fasciculata is metabolically unstable and resistant to polyamine down-regulation (1992) FEBS Lett., 301, pp. 261-264
Bass, K.E., Sommer, J.M., Cheng, Q.L., Wang, C.C., Mouse ornithine decarboxylase is stable in Trypanosoma brucei (1992) J. Biol. Chem., 267, pp. 11034-11037
Zhu, M.J., Iyo, A., Piletz, J.E., Regunathan, S., Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine (2004) Biochim. Biophys. Acta, 1670, pp. 156-164
Coleman, C.S., Hu, G., Pegg, A.E., Putrescine biosynthesis in mammalian tissues Biochem. J., , (in press)
ISSN:03044165
DOI:10.1016/j.bbagen.2004.06.017