Analytical description of the dynamical moduli for a lognormal distribution of relaxation or retardation times
Some mathematical properties of the normalized dimensionless functions, involved in the expressions for the components of the dynamic moduli, for a lognormal distribution of retardation or relaxation times, are presented. Finally, it is shown how the mathematical properties can be used to obtain the...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Kluwer Academic Publishers
1991
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Some mathematical properties of the normalized dimensionless functions, involved in the expressions for the components of the dynamic moduli, for a lognormal distribution of retardation or relaxation times, are presented. Finally, it is shown how the mathematical properties can be used to obtain the parameters, characteristic of the distribution, directly from the experimental dynamic moduliagainst frequency curves, without any numerical evaluation of the normalized dimensionless functions. © 1991 Società Italiana di Fisica. |
|---|---|
| Bibliografía: | Nowick, A.S., Berry, B.S., (1972) Anelastic Relaxation in Crystalline Solids, , Academic Press, New York, N.Y Nowick, A.S., Berry, B.S., Lognormal Distribution Function for Describing Anelastic and Other Relaxation Processes I. Theory and Numerical Computations (1961) IBM Journal of Research and Development, 5, p. 297 Gautschi, W., (1965) Handbook of Mathematical Functions, , M., Abramowitz, I. A., Stegun, Dover, New York, N.Y F. Povolo and C. L. Matteo: to be published |
| ISSN: | 03926737 |
| DOI: | 10.1007/BF02457186 |