Analytical description of the dynamical moduli for a lognormal distribution of relaxation or retardation times

Some mathematical properties of the normalized dimensionless functions, involved in the expressions for the components of the dynamic moduli, for a lognormal distribution of retardation or relaxation times, are presented. Finally, it is shown how the mathematical properties can be used to obtain the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Povolo, Francisco
Otros Autores: Matteo, Claudia Leda
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 1991
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Some mathematical properties of the normalized dimensionless functions, involved in the expressions for the components of the dynamic moduli, for a lognormal distribution of retardation or relaxation times, are presented. Finally, it is shown how the mathematical properties can be used to obtain the parameters, characteristic of the distribution, directly from the experimental dynamic moduliagainst frequency curves, without any numerical evaluation of the normalized dimensionless functions. © 1991 Società Italiana di Fisica.
Bibliografía:Nowick, A.S., Berry, B.S., (1972) Anelastic Relaxation in Crystalline Solids, , Academic Press, New York, N.Y
Nowick, A.S., Berry, B.S., Lognormal Distribution Function for Describing Anelastic and Other Relaxation Processes I. Theory and Numerical Computations (1961) IBM Journal of Research and Development, 5, p. 297
Gautschi, W., (1965) Handbook of Mathematical Functions, , M., Abramowitz, I. A., Stegun, Dover, New York, N.Y
F. Povolo and C. L. Matteo: to be published
ISSN:03926737
DOI:10.1007/BF02457186