DFT Study on the Structures and Stability of BenSnn (n=1 – 5) and Be2nSnn (n=1 – 4) Clusters.

The equilibrium geometries and stabilities of bimetallic BenSnn (n=1 – 5) and Be2nSnn (n=1 – 4) clusters were investigated through DFT calculations. Cluster geometries were optimized using DFT Monte Carlo simulated annealing and the energies ordered via single-point Quadratic Configuration Interacti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fioressi, S.E
Otros Autores: Duchowicz, P., Bacelo, D.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-Blackwell 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The equilibrium geometries and stabilities of bimetallic BenSnn (n=1 – 5) and Be2nSnn (n=1 – 4) clusters were investigated through DFT calculations. Cluster geometries were optimized using DFT Monte Carlo simulated annealing and the energies ordered via single-point Quadratic Configuration Interaction (QCISD(T)) calculations evaluated at the optimized B3LYP geometries. Tridimensional highly symmetric structures were generally found as the most stable ones. They have much more in common with the beryllium silicides and germanides than with the carbides. In the larger clusters, a trend to form beryllium sub-structures capped by tin atoms was observed. The bonding between Be and Sn is largely covalent in character, which suggests that there exist the possibility of obtaining larger structures with novel properties and potential for the development of new materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Bibliografía:Baletto, F., Ferrando, R., (2005) Rev. Mod. Phys., 77, pp. 371-423
Lu, Z.-Y., Wang, C.-Z., Ho, K.-M., (2000) Phys. Rev. B, 61, pp. 2329-2334
Majumder, C., Kumar, V., Mizuseki, H., Kawazoe, Y., (2001) Phys. Rev. B, 64, p. 233405
Majumder, C., Kumar, V., Mizuseki, H., Kawazoe, Y., (2002) Chem. Phys. Lett., 356, pp. 36-42
Assadollahzadeh, B., Schäfer, S., Schwerdtfeger, P., (2010) J. Comput. Chem., 31, pp. 929-937
Chuang, F.-C., Wang, C., Öğüt, S., Chelikowsky, J.R., Ho, K., (2004) Phys. Rev. B, 69, p. 165408
Shvartsburg, A.A., Jarrold, M.F., (2000) Phys. Rev. Lett., 85, pp. 2530-2532
Shvartsburg, A.A., Jarrold, M.F., (1999) Phys. Rev. A, 60, pp. 1235-1239
Lupan, A., King, R.B., (2011) Inorg. Chem., 50, pp. 9571-9577
Kumar, V., Shah, E.V., Roy, D.R., (2015) Phys. E, 68, pp. 224-231
Sun, S., Liu, H., Tang, Z., (2006) J. Phys. Chem. A, 110, pp. 5004-5009
Tai, T.B., Nguyen, M.T., (2011) J. Phys. Chem. A, 115, pp. 9993-9999
Whittles, T.J., Burton, L.A., Skelton, J.M., Walsh, A., Veal, T.D., Dhanak, V.R., (2016) Chem. Mater., 28, pp. 3718-3726
Kumagai, Y., Burton, L.A., Walsh, A., Oba, F., (2016) Phys. Rev. Applied, 6, p. 014009
Fontenot, A.P., Falta, M.T., Kappler, J.W., Dai, S., McKee, A.S., (2016) J. Immunol., 196, pp. 22-27
Kreiss, K., Day, G.A., Schuler, C.R., (2007) Annu. Rev. Public Health, 28, pp. 259-277
Feinberg, L.D., Clampin, M., Keski-Kuha, R., Atkinson, C., Texter, S., Bergeland, M., Gallagher, B.B., Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave (2012) International Society for Optics and Photonics, 8442, p. 84422B. , Bellingham
Stern, M.L., Bari, J.M., (2016) MIT Lincoln Laboratory Lexington United States
Stonehouse, A., Zenczak, S., (1991) Beryllium: Biomedical and Environmental Aspects, pp. 27-55. , M. D. Rossman, O. P. Preuss, M. B. Powers, Williams and Wilkins, Baltimore
Zdetsis, A.D., Sigalas, M.M., Koukaras, E.N., (2014) PCCP, 16, pp. 14172-14182
Tomberlin, A.T., Beryllium-a unique material in nuclear applications (2004) Idaho National Laboratory
Beyer, M.K., Kaledin, L.A., Kaledin, A.L., Heaven, M.C., Bondybey, V.E., (2000) Chem. Phys., 262, pp. 15-23
Sulka, M., Labanc, D., Kovác, M., Pitonák, M., Cernusák, I., Neogrády, P., (2012) J. Phys. B: At., Mol. Opt. Phys., 45, p. 085102
Labanc, D., Šulka, M., Pitoňák, M., Černušák, I., Urban, M., Neogrády, P., (2018) Mol. Phys., pp. 1-16
Zhao, Y., Li, S., Xu, W.-G., Li, Q.-S., (2004) J. Phys. Chem. A, 108, pp. 4887-4894
Binning, R., Bacelo, D.E., (2005) J. Phys. Chem. A, 109, pp. 754-758
Fioressi, S., Bacelo, D.E., Binning, R., Jr., (2012) Chem. Phys. Lett., 537, pp. 75-79
Fioressi, S.E., Bacelo, D.E., (2017) Mol. Phys., 115, pp. 1502-1513
Fioressi, S.E., Binning, R., Jr., Bacelo, D.E., (2014) Chem. Phys., 443, pp. 76-86
Metcalf-Johansen, J., Hazell, R., (1976) Acta Crystallogr. Sect. B: Struct. Sci., 32, pp. 2553-2556
Kim, Y., Kim, W., Kim, D., (2004) Mater. Sci. Eng., A, 375, pp. 127-135
Takeuchi, A., Inoue, A., (2005) Mater. Trans., JIM, 46, pp. 2817-2829
Fahad, S., Murtaza, G., Ouahrani, T., Khenata, R., Yousaf, M., Omran, S.B., Mohammad, S., (2015) J. Alloys Compd., 646, pp. 211-222
Naqvi, S.R., Hussain, T., Luo, W., Ahuja, R., (2017) J. Phys. Chem. C, 121, pp. 7667-7676
Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S., (2009) Phys. Rev. B, 80, p. 155453
Zakutayev, A., Zhang, X., Nagaraja, A., Yu, L., Lany, S., Mason, T.O., Ginley, D.S., Zunger, A., (2013) J. Am. Chem. Soc., 135, pp. 10048-10054
Shi, G., Kioupakis, E., (2015) Nano Lett., 15, pp. 6926-6931
Küfner, S., Furthmüller, J., Matthes, L., Fitzner, M., Bechstedt, F., (2013) Phys. Rev. B, 87, p. 235307
Phillips, A.D., Wright, R.J., Olmstead, M.M., Power, P.P., (2002) J. Am. Chem. Soc., 124, pp. 5930-5931
Reed, D., Stalke, D., Wright, D.S., (1991) Angew. Chem., 103, pp. 1539-1540
(1991) Angew. Chem. Int. Ed., 30, pp. 1459-1460
ISSN:23656549
DOI:10.1002/slct.201802832