DFT Study on the Structures and Stability of BenSnn (n=1 – 5) and Be2nSnn (n=1 – 4) Clusters.
The equilibrium geometries and stabilities of bimetallic BenSnn (n=1 – 5) and Be2nSnn (n=1 – 4) clusters were investigated through DFT calculations. Cluster geometries were optimized using DFT Monte Carlo simulated annealing and the energies ordered via single-point Quadratic Configuration Interacti...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Wiley-Blackwell
2018
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | The equilibrium geometries and stabilities of bimetallic BenSnn (n=1 – 5) and Be2nSnn (n=1 – 4) clusters were investigated through DFT calculations. Cluster geometries were optimized using DFT Monte Carlo simulated annealing and the energies ordered via single-point Quadratic Configuration Interaction (QCISD(T)) calculations evaluated at the optimized B3LYP geometries. Tridimensional highly symmetric structures were generally found as the most stable ones. They have much more in common with the beryllium silicides and germanides than with the carbides. In the larger clusters, a trend to form beryllium sub-structures capped by tin atoms was observed. The bonding between Be and Sn is largely covalent in character, which suggests that there exist the possibility of obtaining larger structures with novel properties and potential for the development of new materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
---|---|
Bibliografía: | Baletto, F., Ferrando, R., (2005) Rev. Mod. Phys., 77, pp. 371-423 Lu, Z.-Y., Wang, C.-Z., Ho, K.-M., (2000) Phys. Rev. B, 61, pp. 2329-2334 Majumder, C., Kumar, V., Mizuseki, H., Kawazoe, Y., (2001) Phys. Rev. B, 64, p. 233405 Majumder, C., Kumar, V., Mizuseki, H., Kawazoe, Y., (2002) Chem. Phys. Lett., 356, pp. 36-42 Assadollahzadeh, B., Schäfer, S., Schwerdtfeger, P., (2010) J. Comput. Chem., 31, pp. 929-937 Chuang, F.-C., Wang, C., Öğüt, S., Chelikowsky, J.R., Ho, K., (2004) Phys. Rev. B, 69, p. 165408 Shvartsburg, A.A., Jarrold, M.F., (2000) Phys. Rev. Lett., 85, pp. 2530-2532 Shvartsburg, A.A., Jarrold, M.F., (1999) Phys. Rev. A, 60, pp. 1235-1239 Lupan, A., King, R.B., (2011) Inorg. Chem., 50, pp. 9571-9577 Kumar, V., Shah, E.V., Roy, D.R., (2015) Phys. E, 68, pp. 224-231 Sun, S., Liu, H., Tang, Z., (2006) J. Phys. Chem. A, 110, pp. 5004-5009 Tai, T.B., Nguyen, M.T., (2011) J. Phys. Chem. A, 115, pp. 9993-9999 Whittles, T.J., Burton, L.A., Skelton, J.M., Walsh, A., Veal, T.D., Dhanak, V.R., (2016) Chem. Mater., 28, pp. 3718-3726 Kumagai, Y., Burton, L.A., Walsh, A., Oba, F., (2016) Phys. Rev. Applied, 6, p. 014009 Fontenot, A.P., Falta, M.T., Kappler, J.W., Dai, S., McKee, A.S., (2016) J. Immunol., 196, pp. 22-27 Kreiss, K., Day, G.A., Schuler, C.R., (2007) Annu. Rev. Public Health, 28, pp. 259-277 Feinberg, L.D., Clampin, M., Keski-Kuha, R., Atkinson, C., Texter, S., Bergeland, M., Gallagher, B.B., Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave (2012) International Society for Optics and Photonics, 8442, p. 84422B. , Bellingham Stern, M.L., Bari, J.M., (2016) MIT Lincoln Laboratory Lexington United States Stonehouse, A., Zenczak, S., (1991) Beryllium: Biomedical and Environmental Aspects, pp. 27-55. , M. D. Rossman, O. P. Preuss, M. B. Powers, Williams and Wilkins, Baltimore Zdetsis, A.D., Sigalas, M.M., Koukaras, E.N., (2014) PCCP, 16, pp. 14172-14182 Tomberlin, A.T., Beryllium-a unique material in nuclear applications (2004) Idaho National Laboratory Beyer, M.K., Kaledin, L.A., Kaledin, A.L., Heaven, M.C., Bondybey, V.E., (2000) Chem. Phys., 262, pp. 15-23 Sulka, M., Labanc, D., Kovác, M., Pitonák, M., Cernusák, I., Neogrády, P., (2012) J. Phys. B: At., Mol. Opt. Phys., 45, p. 085102 Labanc, D., Šulka, M., Pitoňák, M., Černušák, I., Urban, M., Neogrády, P., (2018) Mol. Phys., pp. 1-16 Zhao, Y., Li, S., Xu, W.-G., Li, Q.-S., (2004) J. Phys. Chem. A, 108, pp. 4887-4894 Binning, R., Bacelo, D.E., (2005) J. Phys. Chem. A, 109, pp. 754-758 Fioressi, S., Bacelo, D.E., Binning, R., Jr., (2012) Chem. Phys. Lett., 537, pp. 75-79 Fioressi, S.E., Bacelo, D.E., (2017) Mol. Phys., 115, pp. 1502-1513 Fioressi, S.E., Binning, R., Jr., Bacelo, D.E., (2014) Chem. Phys., 443, pp. 76-86 Metcalf-Johansen, J., Hazell, R., (1976) Acta Crystallogr. Sect. B: Struct. Sci., 32, pp. 2553-2556 Kim, Y., Kim, W., Kim, D., (2004) Mater. Sci. Eng., A, 375, pp. 127-135 Takeuchi, A., Inoue, A., (2005) Mater. Trans., JIM, 46, pp. 2817-2829 Fahad, S., Murtaza, G., Ouahrani, T., Khenata, R., Yousaf, M., Omran, S.B., Mohammad, S., (2015) J. Alloys Compd., 646, pp. 211-222 Naqvi, S.R., Hussain, T., Luo, W., Ahuja, R., (2017) J. Phys. Chem. C, 121, pp. 7667-7676 Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S., (2009) Phys. Rev. B, 80, p. 155453 Zakutayev, A., Zhang, X., Nagaraja, A., Yu, L., Lany, S., Mason, T.O., Ginley, D.S., Zunger, A., (2013) J. Am. Chem. Soc., 135, pp. 10048-10054 Shi, G., Kioupakis, E., (2015) Nano Lett., 15, pp. 6926-6931 Küfner, S., Furthmüller, J., Matthes, L., Fitzner, M., Bechstedt, F., (2013) Phys. Rev. B, 87, p. 235307 Phillips, A.D., Wright, R.J., Olmstead, M.M., Power, P.P., (2002) J. Am. Chem. Soc., 124, pp. 5930-5931 Reed, D., Stalke, D., Wright, D.S., (1991) Angew. Chem., 103, pp. 1539-1540 (1991) Angew. Chem. Int. Ed., 30, pp. 1459-1460 |
ISSN: | 23656549 |
DOI: | 10.1002/slct.201802832 |