Towards the definition of AMS facies in the deposits of pyroclastic density currents

Abstract Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Ar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ort, M.H
Otros Autores: Newkirk, T.T, Vilas, J.F, Vazquez, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Geological Society of London 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Abstract Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate-strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation. © 2015 The Geological Society of London.
Bibliografía:Baer, E.M., Fisher, R.V., Fuller, M., Valentine, G., Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility (1997) Journal of Geophysical Research, 102, pp. 22565-22586
Branney, M.J., Kokelaar, B.P., A reappraisal of ignimbrite emplacement: changes from particulate to non-particulate flow during progressive aggradation of high-grade ignimbrite (1992) Bulletin of Volcanology, 54, pp. 504-520
Branney, M.J., Kokelaar, B.P., (2002) Pyroclastic Density Currents and the Sedimentation of Ignimbrites, 27. , Geological Society, London, Memoirs
Burgisser, A., Bergantz, G.W., Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents (2002) Earth and Planetary Science Letters, 202, pp. 405-418
Cagnoli, B., Tarling, D.H., The reliability of anisotropy of magnetic susceptibility (AMS) data as flow direction indicators in friable base surge and ignimbrite deposits: Italian examples (1997) Journal of Volcanology and Geothermal Research, 75, pp. 309-320
Cañon-Tapia, E., Single grain v. distribution anisotropy: a simple three-dimensional model (1996) Physics of the Earth and Planetary Interiors, 94, pp. 149-158
Chough, S.K., Sohn, Y.K., Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea (1990) Sedimentology, 37, pp. 1115-1135
Choux, C.M., Druitt, T.H., Analogue study of particle segregation in pyroclastic density currents, with implications for the emplacement mechanisms of large ignimbrites (2002) Sedimentology, 49, pp. 907-928
Dellino, P., Isaia, R., La Volpe, L., Orsi, G., Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy) (2004) Journal of Volcanology and Geothermal Research, 133, pp. 193-210. , http://dx.doi.org/10.1016/S0377-0273(03)00398-6
Dellino, P., Mele, D., Sulpizio, R., La Volpe, L., Braia, G., A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics (2008) Journal of Geophysical Research, 113. , http://dx.doi.org/10.1029/2007JB005365
Delpino, D., Bermúdez, A., La actividad del Volcán Copahue durante 1992. Erupción con emisiones de azufre piroclástico, Provincia del Neuquén, Argentina (1993), pp. 292-301. , XII Congreso Geológico Argentino y II Congreso de Exploracion de Hidrocarburos, Mendoza, Actas, IV, Buenos Aires, Asociación Geológica Argentina; Ellwood, B.B., Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: Central San Juan Mountains, southwest Colorado (1982) Earth and Planetary Sciences Letters, 59, pp. 303-314
Fisher, R.A., Dispersion on a sphere (1953) Proceedings of the Royal Society of London, A217, pp. 295-305
Fisher, R.V., Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington (1990) Geological Society of America Bulletin, 102, pp. 1038-1054
Fisher, R.V., Decoupling of pyroclastic currents: hazards assessments (1995) Journal of Volcanology and Geothermal Research, 66, pp. 257-263
Fisher, R.V., Schmincke, H.-U., (1984) Pyroclastic Rocks, , Berlin, Springer
Fisher, R.V., Orsi, G., Ort, M., Heiken, G., Mobility of a large-volume pyroclastic flow - Emplacement of the Campanian Ignimbrite, Italy (1993) Journal of Volcanology and Geothermal Research, 56, pp. 205-220
Folguera, A., Ramos, V.A., Control estructural del volcán Copahue (38 °S-71 °O): implicancias tectónicas para el arco volcánico cuaternario (36-39 °S) (2000) Revista de la Asociación Geológica Argentina, 55, pp. 229-244
Geissman, J.W., Holm, D., Harlan, S.S., Embree, G.F., Rapid, high-temperature formation of large-scale rheomorphic structures in the 2.06 Ma Huckleberry Ridge Tuff, Idaho, USA (2010) Geology, 38, pp. 263-266. , http://dx.doi.org/10.1130/G30492.1
Grunder, A., Russell, J.K., Welding processes in volcanology: insights from field, experimental, and modeling studies (2005) Journal of Volcanology and Geothermal Research, 142, pp. 1-9. , http://dx.doi.org/10.1016/j.jvolgeores.2004.10.010
Gurioli, L., Zanella, E., Pareschi, M.T., Lanza, R., Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition (2007) Journal of Geophysical Research, 112. , http://dx.doi.org/10.1029/2006JB004444
Hagstrum, J.T., Lipman, P.W., Elston, D.P., Paleomagnetic evidence bearing on the structural development of the Latir volcanic field near Questa, New Mexico (1982) Journal of Geophysical Research, 87, pp. 7833-7842
Hargraves, R.B., Johnson, D., Chan, C.Y., Distribution anisotropy: the cause of AMS in igneous rocks? (1991) Geophysical Research Letters, 18, pp. 2193-2196
Hillhouse, J.W., Wells, R.E., Magnetic fabric, flow directions, and source area of the lower Miocene Peach Springs Tuff in Arizona, California, and Nevada (1991) Journal of Geophysical Research, 96, pp. 12443-12460
Jackson, J.A., (1997) Glossary of Geology, , 4th edn, Alexandria, VA, American Geological Institute
Jelinek, V., (1977) The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and its Application, , Geofyzika Brno, Institute of Geophysics Report
Kamata, H., Mimura, K., Flow directions inferred from imbrication in the Handa pyroclastic flow deposit in Japan (1983) Bulletin of Volcanology, 46, pp. 277-282
Le Pennec, J.-L., Chen, Y., Diot, H., Froger, J.-L., Gourgaud, A., Interpretation of anisotropy of magnetic susceptibility of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study (1998) Earth and Planetary Science Letters, 157, pp. 105-127. , http://dx.doi.org/10.1016/S0012-821x(97)00215-X
Lesti, C., Porreca, M., High temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses (2011) Bulletin of Volcanology, 73, pp. 1535-1565. , http://dx.doi.org/10.1007/s00445-011-0536-2
Linares, E., Ostera, H.A., Mas, L.C., Cronología potasio-argón del Complejo Efusivo Copahue-Caviahue, Provincia de Neuquén (1999) Revista de la Asociación Geológica Argentina, 54, pp. 240-247
Lipman, P.W., Dungan, M.A., Brown, L.L., Deino, A., Recurrent eruption and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field, Colorado: new tales from old tuffs (1996) Geological Society of America Bulletin, 108, pp. 1039-1055
MacDonald, W.D., Palmer, H.C., Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA (1990) Bulletin of Volcanology, 53, pp. 45-59
Mazzoni, M.M., Licitra, D.T., Significado estratigráfico y volcanológico de depósitos de flujos piroclásticos Neógenos con composición intermedia en la zona del Lago Caviahue, Provincia del Neuquén (2000) Revista de la Asociación Geológica Argentina, 55, pp. 188-200
Newkirk, T.N., Anisotropy of magnetic susceptibility of phreatomagmatic surge deposits, Hopi Buttes, Navajo Nation, Arizona, USA (2009), Northern Arizona University, MSc thesis; Ort, M.H., Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, central Andes Mountains (1993) Journal of Volcanology and Geothermal Research, 56, pp. 221-252
Ort, M.H., Dallegge, T.A., Vazquez, J.A., White, J.D.L., Duebendorfer, E.M., Volcanism and sedimentation in the Mio-Pliocene Bidahochi Formation, Navajo Nation, northeastern Arizona (1998) Geologic Excursions in Northern and Central Arizona, pp. 35-57. , Boulder, CO, Geological Society of America
Ort, M.H., Rosi, M., Anderson, C.A., Correlation of deposits and vent locations of the proximal Campanian Ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics (1999) Journal of Volcanology and Geothermal Research, 91, pp. 167-178
Ort, M.H., Orsi, G., Pappalardo, L., Fisher, R.V., Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy (2003) Bulletin of Volcanology, 65, pp. 55-72. , http://dx.doi.org/10.1007/s00445-002-0241-2
Palmer, H.C., MacDonald, W.D., Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations (1999) Tectonophysics, 307, pp. 207-218
Palmer, H.C., MacDonald, W.D., Hayatsu, A., Magnetic, structural and geochronologic evidence bearing on volcanic sources and Oligocene deformation of ash flow tuffs, northeast Nevada (1991) Journal of Geophysical Research, 96, pp. 2185-2202
Pioli, L., Rosi, M., Rheomorphic structures in a high-grade ignimbrite: the Nuraxi tuff, Sulcis volcanic district (SW Sardinia, Italy) (2005) Journal of Volcanology and Geothermal Research, 142, pp. 11-28. , http://dx.doi.org/10.1016/j.volgreores.2004.10.011
Pioli, L., Lanza, R., Ort, M.H., Rosi, M., Magnetic fabric, welding texture and strain fabric in the Nuraxi tuff, Sardinia, Italy (2008) Bulletin of Volcanology, 70, pp. 1123-1137. , http://dx.doi.org/10.1007/s00445-008-0194-1
Porreca, M., Mattei, M., Giordano, G., De Rita, D., Funiciello, R., Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy (2003) Journal of Geophysical Research, 108, pp. 22-64. , http://dx.doi.org/10.1029/2002JB002102
Schlinger, C.M., Rosenbaum, J.G., Veblen, D.R., Fe-oxide microcrystals in welded tuff from southern Nevada: origin of remanence carriers by precipitation in volcanic glass (1988) Geology, 16, pp. 556-559
Sohn, Y.K., Chough, S.K., Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea) (1989) Sedimentology, 36, pp. 837-855
Sohn, Y.K., Son, M., Jeong, J.O., Jeon, Y.M., Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea) (2009) Sedimentary Geology, 220, pp. 190-203. , http://dx.doi.org/10.1016/j.sedgeo.2009.04.020
Sohn, Y.K., Cronin, S.J., Ilchulbong tuff cone, Jeju Island, Korea, revisited: a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases (2012) Geological Society of America Bulletin, 124, pp. 259-274. , http://dx.doi.org/10.1130/B30447.1
Sulpizio, R., Mele, D., Dellino, P., La Volpe, L., Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy (2007) Sedimentology, 54, pp. 607-635. , http://dx.doi.org/10.1111/j.1365-3091.2006.00852.x
Suzuki, K., Ui, T., Grain orientation and depositional ramps as flow direction indicators of large-scale pyroclastic flow deposits, Japan (1982) Geology, 10, pp. 429-432
Thomas, I.M., Moyer, T.C., Wikswo Jr, J.P., High resolution magnetic susceptibility imaging of geological thin sections: pilot study of a pyroclastic sample from the Bishop Tuff, California, U.S.A (1992) Geophysical Research Letters, 19, pp. 2139-2142
Varekamp, J.C., Maarten De Moor, J., Merrill, M.D., Colvin, A.S., Goss, A.R., Vroon, P.Z., Hilton, D.R., Ramos, V.A., Geochemistry and isotopic characteristics of the Caviahue-Copahue volcanic complex, Province of Neuquén, Argentina (2006) Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°-39 °S lat), 407, pp. 317-342. , http://dx.doi.org/10.1130/2006.2407(15), Geological Society of America, Boulder, Special Paper
Vazquez, J.A., (1998) Maar volcanism in the Wood Chop Mesa area, Hopi Buttes volcanic field, Navajo Nation, Arizona, , Northern Arizona University, MSc thesis
Vazquez, J.A., Ort, M.H., Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA (2006) Journal of Volcanology and Geothermal Research, 154, pp. 222-236. , http://dx.doi.org/10.1016/j.jvolgeores.2006.01.003
Wells, R.E., Hillhouse, J.W., Paleomagnetism and tectonic rotation of the lower Miocene Peach Springs Tuff: Colorado Plateau, Arizona, to Barstow, California (1989) Geological Society of America Bulletin, 101, pp. 846-863
Wilson, C.J.N., Hildreth, W., Assembling an ignimbrite: mechanical and thermal building blocks in the Bishop Tuff, California (2003) Journal of Geology, 111, pp. 653-670
Wilson, C.J.N., Houghton, B.F., Sigurdsson, H., Pyroclast transport and deposition (2000) Encyclopedia of Volcanoes, pp. 545-554. , San Diego, CA, Academic Press
Wilson, C.J.N., Walker, G.P.L., Ignimbrite depositional facies: the anatomy of a pyroclastic flow (1982) Journal of the Geological Society, London, 139, pp. 581-592
Wohletz, K.H., Sheridan, M.F., Chapin, C.E., Elston, W.E., A model of pyroclastic surge (1979) Ash-Flow Tuffs, 180, pp. 177-194. , Geological Society of America, Boulder, Special Papers
Wolff, J.A., Ellwood, B.B., Sachs, S.D., Anisotropy of magnetic susceptibility in welded tuffs: application to a welded-tuff dyke in the Tertiary Trans-Pecos Texas volcanic province, USA (1989) Bulletin of Volcanology, 51, pp. 299-310
Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bontempi, M., Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma-Vesuvius, Italy (2008) Bulletin of Volcanology, 70, pp. 1237-1248. , http://dx.doi.org/10.1007/s00445-008-0199-9
ISSN:03058719
DOI:10.1144/SP396.8